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ABSTRACT
Current methods of functional failure risk analysis do not

facilitate explicit modeling of systems equipped with Prognos-
tics and Health Management (PHM) hardware. As PHM sys-
tems continue to grow in application and popularity within major
complex systems industries (e.g. aerospace, automotive, civilian
nuclear power plants), implementation of PHM modeling within
the functional failure modeling methodologies will become use-
ful for the early phases of complex system design and for analysis
of existing complex systems. Functional failure modeling meth-
ods have been developed in recent years to assess risk in the
early phases of complex system design. However, the methods
of functional modeling have yet to include an explicit method for
analyzing the effects of PHM systems on system failure probabil-
ities. It is common practice within the systems health monitoring
industry to design the PHM subsystems during the later stages
of system design – typically after most major system architecture
decisions have been made. This practice lends itself to the omis-
sion of considering PHM effects on the system during the early
stages of design. This paper proposes a new method for analyz-
ing PHM subsystems’ contribution to risk reduction in the early
stages of complex system design. The Prognostic Systems Vari-
able Configuration Comparison (PSVCC) eight-step method de-
veloped here expands upon existing methods of functional failure
modeling by explicitly representing PHM subsystems. A generic

∗Address all correspondence to this author.

pressurized water nuclear reactor primary coolant loop system is
presented as a case study to illustrate the proposed method. The
success of the proposed method promises more accurate model-
ing of complex systems equipped with PHM subsystems in the
early phases of design.

1 INTRODUCTION
Many complex systems use Prognostics and Health Man-

agement (PHM) systems to detect incipient failures and direct
recovery actions performed either by automated recovery sys-
tems or by human operators. However, little attention has been
paid to PHM systems in the earliest phases of complex system
design. Risk analysis methods such as Probabilistic Risk Assess-
ment (PRA) and Function Failure Identification and Propagation
(FFIP) do not explicitly consider PHM systems. While PRA can
model recovery actions, FFIP does not have the ability to model
recovery actions during a failure scenario.

It is important for system designers to have a clear picture of
system failure probabilities during the early phases of complex
system design. The knowledge of system failure probabilities
allows system designers to iterate on potential configurations to
achieve a target system risk level within budgetary constraints.
The later in the design process that a clear picture of system risk
is generated, the more expensive and time-consuming it becomes
to fix system design problems that prevent the desired level of
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system risk from being achieved.
The Prognostic Systems Variable Configuration Compari-

son (PSVCC) method presented in this paper provides system
designers with an early phase complex system design tool that
provides information on PHM systems and recovery actions for
failure analysis. System designers can rapidly analyze multi-
ple PHM system configurations and identify the most appropri-
ate configuration for the system based upon desired risk level
and budgetary constraints. The PSVCC method is automatable
and can be performed with other function failure design meth-
ods such as FFIP and Uncoupled Failure Flow State Reasoning
(UFFSR).

1.1 Specific Contributions
This paper presents a novel functional failure modeling-

based method, the PSVCC, of analyzing PHM system config-
urations for system failure risk reduction in the early phases of
complex system design. System designers can use this method
to optimize PHM system configurations that take into account
complex system human operator or automated system recovery
actions during the progression of a failure event before the failure
event has progressed to a system-level failure.

2 BACKGROUND
Many complex systems, such as civilian nuclear power

plants, contain PHM equipment to monitor plant systems, de-
tect incipient failures, and take corrective actions before a fail-
ure propagates throughout the entire system and causes system-
level failure. Risk and reliability analysis methods such as
PRA, Failure Modes and Effects Analysis (FMEA), and other
industry-standard tools offer limited insight to account for PHM
equipment during the design phase of a complex system. Early
risk-informed conceptual design phase tools based on functional
modeling such as FFIP, Flow State Logic (FSL), UFFSR, and
others do not yet have the ability to explicitly model PHM sys-
tems and their functions within complex systems. The work pre-
sented in this paper bridges the gap between the early phases of
conceptual system design and the installation of PHM systems
to give system designers the ability to model PHM equipment as
early as possible in the design process. A review of relevant lit-
erature to this paper is presented below specifically focusing on
industry-standard tools (PRA, FMEA, RBD) that are deficient
in PHM considerations and early conceptual design tools (FFIP,
FSL, UFFSR) that the method developed in this paper is based
upon.

2.1 Prognostics and Health Management
PHM provides information on system health status and pre-

dictions about when a system or component will fail by using

realtime system data from sensors and other signal sources. Re-
maining useful life predictions can be used to inform mainte-
nance staff and system operators of how much longer a system
can be run before it needs to be maintained or repaired. PHM
information can also be used to notify operators of impending
failure events so that recovery actions can be taken to prevent
system-level failure. Many complex systems, such as nuclear
power plants, make extensive use of PHM systems to improve
safety and reliability [1–7].

2.2 Failure Modes and Effects Analysis
FMEA is a tool used in the early phases of design to assess

system and component failures. A Risk Priority Number (RPN)
is generated from determining the probability of occurrence, the
detectability of the problem before it becomes a realized sys-
tem fault, and the severity of the resulting chain of events. This
method relies upon expert judgement and prior system knowl-
edge to generate potential failure modes of the system under de-
velopment. While FMEA is a useful tool and can be used to an-
alyze limited data from other PHM systems, it is not well suited
to comprehensively analyze potential design configurations for
PHM systems in large complex system designs [8, 9].

2.3 Reliability Block Diagrams
Reliability Block Diagrams (RBDs) have been used for

many decades for early phase system development. The RBD
method graphically illustrates the flow of energy or material
through a system by presenting blocks representing components
or subsystems and connecting them with lines representing how
subsystems or components interact with one another. Reliability
statistics can be attached to the individual component or subsys-
tem blocks. The reliability information can be compiled into a
system reliability probability that allows designers to search for
single point sources of failure in a system design. RBD meth-
ods can be used to model parts or sections of a PHM subsys-
tem (those which are directly in line with the failure flow being
analyzed within the RBD). However, the inability of the RBD
method to explicitly consider and compare potential PHM equip-
ment configurations and recovery actions for the purposes of de-
sign and optimization creates the demand for a novel method to
approach this early stage design problem [10–12].

2.4 Probabilistic Risk Assessment
In the civilian nuclear power industry, PRA has been devel-

oped to analyze highly complex nuclear power generation sta-
tions. The nuclear industry follows a strict defense in depth
philosophy which requires multiple redundant and diverse sys-
tems to prevent single point failures causing significant acci-
dents [13–15]. A critical system-level failure in a nuclear power
plant could lead to the release of radiation beyond the site bound-
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ary and a significant loss of revenue for a utility operator. PRA
was developed in part to verify defense in depth design strategies
as being effective and in part to seek out ways to further reduce
system failure risk. Highly complex, multi component and multi
subsystem failure events can be modeled using PRA to determine
failure propagation pathways that otherwise would not have been
discovered during the design of a power plant [16,17]. PRA uses
Fault Trees (FTs) and Event Trees (ETs) with statistical models
developed from idealized component models and updated using
Bayesian statistics with plant operation data. Cut sets are gener-
ated that provide information on the minimum number of compo-
nents or subsystems that need to fail in order to cause a system-
level failure (often defined as partial melting of the Zircaloy fuel
cladding). The statistical failure information from each failed
component is brought together using boolean algebra to deter-
mine the probability of a specific failure sequence occurring. All
of the cut sets generated from a PRA model are summed together
to determine total system-level failure risk. Beyond the nuclear
power industry, several other industries have adopted PRA in-
cluding the aerospace industry, the automotive industry (in cer-
tain sectors), and most recently, the petroleum industry.

PRA contains limited abilities to model PHM equipment and
recovery actions in the form of recovery events and Human Re-
liability Analysis (HRA). HRA is a suite of methods that allow
the calculation of likelihood that a human plant operator will be
able to perform an action or sequence of actions to recover a sys-
tem from a failure progression back to a safe system state (often
a cold shutdown state in a nuclear power plant) [18–20]. Most
HRA methods require operators to be presented with plant state
information so that operators can detect an incipient failure event
and react before the failure has propagated to a system-level fail-
ure. The hardware involved in detecting plant state and reporting
it to the operator is generally not analyzed and is assumed to
function without failure. The success or failure of operators to
conduct a recovery action is determined through various analysis
techniques in the various HRA methods but all result in a proba-
bility of a successful recovery action. The probability can be put
into PRA models to provide a more realistic probabilisitic failure
model that includes humans.

2.5 Functional Modeling Tools
As it became clear over the last two decades that a more rig-

orous method of modeling complex systems at the earliest phases
of design was needed, Stone and Wood developed the Functional
Basis for Engineering Design (FBED) [21–24]. FBED provides
a standardized method of representing system functionality in
complex systems through mapping functions and the flows of
energy, material, and data between the functions. Many methods
extending FBED have been developed since its introduction. The
Function Failure Design Method (FFDM) was developed to link
failure data with individual functions to provide system design-

ers with information on likely sources of failure in the component
embodiment of a specific function so that design decisions can be
made to reduce failure probability in the physical system [25].
Function-based Analysis of Critical Events (FACE) provides a
means of analyzing different phases of a complex systems mis-
sion, such as various operation and shutdown phases of a nu-
clear power plant [26]. FFIP was introduced to analyze failure
flows through a complex system after a single point failure has
occurred [27]. FSL followed FFIP to provide a rigorous quan-
titative probabilisitic analysis tool for calculating system failure
probabilities based on FFIP failure flow information [28, 29].

Shortcomings were found in the original FFIP methodol-
ogy such as the inability to model uncoupled failure flows across
functional boundaries. PRA has some tools available to do this
such as fire and flood analysis that provide information on the
likelihood of a failure propagation path across uncoupled sys-
tems from a fire or flood event. However, the PRA fire and
flood analysis implementations are imprecise in their analysis
and are impractical to use in the early phases of complex system
design [30–34]. The UFFSR method was developed to expand
upon FFIP and provide the ability to model failure flows that
cross functional and system boundaries [35, 36]. To date, PHM
modeling using function failure modeling has not yet been de-
veloped. This paper introduces the PSVCC method of modeling
PHM systems in the early phases of complex system design.

3 METHODOLOGY
In this section, the PSVCC method for analyzing the effects

that PHM equipment has on system failure probability in the
early stages of design is presented. The PSVCC method builds
upon the function failure modeling methods of FFIP and FSL
that in turn build upon FBED. By inserting PHM equipment into
a functional failure model and crediting recovery actions taken
by either system operators or by automated recovery systems, a
more complete understanding of system failure risks can be at-
tained earlier in the design process.

The values used within the paper to demonstrate the PSVCC
methodology– such as epsilon values, DFP values, sigma val-
ues, and RFF values– are intentionally fictional but representa-
tive of nominal values within a variety of nuclear power indus-
try sources, such as handbooks, manuals, and technical papers
published by the Nuclear Regulatory Commission and the Inter-
national Atomic Energy Agency [37]. It should be noted that
the values used here to demonstrate the presented methodology,
while intentionally fictional, have been chosen as a reasonable
representation of expected values with the discretion of the au-
thor’s expert opinion as a former nuclear submarine plant op-
erator. The authors believe these values to be of merit, based
upon the Nuclear Regulatory Commission’s Probabilistic Risk
Assessment Tutorial which states that operating experience is the
primary source for risk assessment data, such as ”frequency of
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many initiating events, failure rates of plant equipment, average
availability of plant equipment, [and] probabilities of repair and
recovery” [37]. ”Expert elicitation” is declared by the NRC as a
special method for vital risk assessment value determination in
severe casualty situations. Significant work beyond the scope of
this paper is necessary to collect sufficient data from real systems
and operators to develop accurate sigma, epsilon, DFP, and RFF
values. The values created for use in this methodology do not
represent a specific, real physical system, but are representative
of a class of systems. Note again, this paper uses values derived
from expert opinion and industry resources for the purpose of il-
lustrating the method; these specific values should not be used
for safety-critical analysis.

The steps to perform PSVCC are presented below:
Step 1: Create a FBED model of the system of interest and

generate a FFIP model of potential failures and failure paths. The
FBED model can be generated in a variety of ways including
from an existing system’s Piping and Instrumentation Diagram
(P&ID) as in the case of an existing system redesign or reanaly-
sis. For new systems in the early stages of design, a FBED model
can typically be generated from the conceptual design to create
a preliminary model of the system. As the FBED is a simplis-
tic, functional-level model, generating a FBED during the early
stages of design is practical and effective.

Step 2: Generate a list of prospective PHM parameters to
be monitored and potential locations for PHM devices to be in-
stalled in the system. The authors suggest that these devices be
represented on the system’s FFIP model, using a generic conven-
tional P&ID symbol for an instrumentation tap. Visually indicate
PHM parameter signal feeds on the functional model from each
PHM device to any/all components or functions that are consid-
ered to be significantly influenced by the state of the monitored
parameters.

Step 3: Determine the states of impending system failure,
identifying values for Categories of Concern (Low, High, Fail),
as well as the probabilities that the impending system failure be-
ing analyzed results in each of the Categories of Concern (repre-
sented as σ -values). These categories are a direct analogue to the
parameter value bands of concern marked on an instrumentation
gauge commonly found in complex systems such as civilian nu-
clear power plants. Figure 1 illustrates an example of these Cat-
egories of Concern as represented on a gauge readout. Note that
the authors advocate that in most cases category ranges should be
defined for values both above and below normal operating range,
as illustrated in the figure.

Step 4: Determine for each PHM sensor, and in each of
the Categories of Concern, the failure probability of the PHM
device to detect the condition, the Detection Failure Probability
(DFP). Tabulate this information into a database for automated
generation of cut sets later on in PSVCC.

Step 5: For each Category of Concern, determine the proba-
bilities of various system functions failing before plant operators

FIGURE 1. GAUGE INDICATIONS OF CATEGORIES OF CON-
CERN. THE GREEN AREA OF THE GAUGE (200-400 KPA) REP-
RESENTS NORMAL OPERATING CONDITIONS. THE YELLOW
AREAS OF THE GAUGE (100-200KPA, 400-500 KPA) REPRESENT
AN AREA OF LOW CONCERN. THE AREAS OF RED ON THE
GAUGE (0-100 KPA, 500-700KPA) REPRESENT AREAS OF HIGH
CONCERN. AREAS BEYOND THE HIGH AREAS OF CONCERN
REPRESENT AREAS OF FAILURE CONCERN.

have time to correct the fault (ε-values). This is equivalent to an
on-demand failure probability for components modeled in a PRA
analysis.

Step 6: Determine the probabilities of operator ac-
tion/inaction failing to restore system functionality, Restore
Functionality Failure (RFF), for each Category of Concern. This
information can be generated from existing HRA methods.

Step 7: Perform cut set analysis on the system. “Cut set”
analysis is a term used within the risk assessment field which
refers to the act of “cutting” the logic branches of a fault tree.
Each cut set evaluates a combination of events which will result
in system-wide failure. The cut sets performed for this method-
ology provide values for system-wide failure probabilities on a
yearly basis. Further information on cut set analysis methods
can be found in the reference material. Cut set analysis can be
accomplished through an automated software-driven process or
on small enough systems can be performed by hand. An impor-
tant point here is that each potential PHM sensor configuration
should have a full set of cut sets developed separately. The next
step will use the cut sets developed for each potential PHM sen-
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sor configuration to search for the optimized PHM system con-
figuration.

Step 8: Compare the cut sets for the different sensor con-
figurations. The cut set results may be used to determine how
many sensors are useful for the system. Most likely, one or more
proposed PHM sensors will be found to not be useful to over-
all system reliability and can be removed. It is also important
to compare the various cut sets with the FFIP-generated failure
probability of the system. The cut set failure probabilities are
expected to be lower with the use of PHM equipment unless the
PHM equipment has no effect in the failure scenario. If the PHM
configuration cut sets have little or no effect on system reliabil-
ity when compared with FFIP results, a reanalysis of potential
PHM configurations and recovery actions must be performed.
This also may be an indicator that redundant systems need to
be developed if recovery actions cannot be performed on the sys-
tem of interest before a Category of Concern failure progresses
to a system failure.

The PSVCC method presented in this section provides sys-
tem designers with a functional failure modeling tool that can
be used in the early stages of complex system design for analy-
sis of PHM equipment effects on system reliability. In the event
that a Category of Concern failure initiates but before a failure
has progressed to a system failure, recovery actions by either
plant operators or by automated systems may recover from the
fault state and preserve nominal system operation. The PSVCC
method can be performed by hand on small systems but is best
suited for automated software analysis.

4 CASE STUDY
To illustrate the PSVCC method, a case study is presented

in this section based upon a single, simplified primary Reactor
Core Coolant Loop (RCCL) in a large generic commercial Pres-
surized Water Reactor (PWR) nuclear power plant. It should be
noted that the RCCL modeled here for the purpose of the case
study is a single loop; multiple-loop redundancy paths are not
analyzed for the purpose of demonstrating PSVCC on a simple
but illustrative model. However, PSVCC is equally viable when
modeling extremely complex systems such as large commercial
PWRs.

The single RCCL presented here is composed of five major
system components: the reactor (RX), a steam generator (S/G),
two Reactor Coolant loop Isolation valves (RCI-1/2), and a sin-
gle Main Coolant Pump (MCP). Figure 2 provides a generic
P&ID of the RCCL from which a functional model can be de-
rived. The primary function of this system is to generate heat
(via the RX) and transfer that heat to the secondary system (via
the S/G) where the heat can be used to generate electrical power.
The MCP serves to transport the coolant liquid through the pri-
mary system and maintain flow through the RX to ensure proper
cooling and prevent core meltdown. The RCI-1/2 serve the pur-

pose of RCCL isolation in the event of a failure scenario such
as a primary coolant leak, detection of foreign solid particulate,
etc., or maintenance. This case study includes the analysis of the
PHM equipment associated with the system, of which there are
a total of six potential sensors, described in Table 1. The case
study follows the methodology previously presented in the fol-
lowing subsections and specifically analyzes a heat flow failure
scenario physically equivalent to a S/G failure.

Step 1: Create a FFIP model of the system
Using the P&ID of the system of interest (Figure 2), a func-

tional block diagram is developed. Figure 3 shows the result-
ing functional block diagram of the RCCL being analyzed for
this case study and Figure 4 shows the FFIP failure model of
a heat flow failure initiating event being analyzed in this case
study. Other initiating events are not presented here for clarity
and brevity.

Step 2: Prospective PHM Equipment
For each function, a list of parameters that will significantly

influence the function’s probability of failure is identified. A ta-
ble, such as Table 2, is created to organize this information.

TABLE 2. SIGNIFICANT PARAMETERS BY FUNCTION

Function Th Tc PL LB1 LB2 PNM

Rx x x x

S/G x x

MCP x x x

RCI-1 x x x

RCI-2 x x x

From the information in Table 2, the parameters most likely
to contribute significantly to function failure are identified. PHM
devices specific to these parameters are chosen and placed within
the system for modeling and analysis.

PHM device signal feeds are visually indicated on the func-
tional model from each PHM device to any and all functions of
the system that have been determined to be significantly influ-
enced by that parameter, as noted on Table 2. The resulting func-
tional model including the prospective PHM instrumentation sig-
nal feeds is illustrated in Figure 5. Note that this step is useful
for conceptual mapping, but may become too graphically over-
whelming when attempting to model very complex systems with
a multitude of significant PHM parameters and components. A
computer-readable table is all that is required for automated anal-
ysis. For the rest of this case study, only the Th, Tc, and PL
PHM sensors are analyzed for simplicity although the steps are
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TABLE 1. DESCRIPTION OF PHM DEVICES

PHM Device Name Parameter Monitored Type of Device Function Name

Th Hot leg fluid temperature Resistance temperature detector Signal-Sense, Measure

Tc Cold leg fluid temperature Resistance temperature detector Signal-Sense, Measure

PL RCCL pressure Linear variable differential transformer Signal-Sense, Measure

LB1 Leak-by of RCI-1 Flow detector Signal-Sense, Measure

LB2 Leak-by of RCI-2 Flow detector Signal-Sense, Measure

PNM Decibel level of pump operation Microphone Signal-Sense, Measure

FIGURE 2. P&ID OF THE SIMPLIFIED RCCL OF A GENERIC COMMERCIAL PWR. THE RCI-1/2 ARE NORMALLY OPEN DURING LOOP
OPERATION, AND SHUT TO SERVE THE FUNCTION OF LOOP ISOLATION IN THE EVENT OF MAINTENANCE OR FAILURE SCENARIO.

the same and results are similar for analyzing all six potential
PHM sensors.

Step 3: System States of Failure and Categories of Con-
cern For each PHM parameter, a range of values are defined for
each of the four categories of concern: Normal, Low, High, and
Fail. The Normal range should be representative of acceptable
parameter values within nominal operating conditions. The Nor-
mal range will not be evaluated for failure analysis during the
method presented in this paper. This is due to the fact that nor-
mal operating conditions are not typically indicative of elevated
risk towards impending system failure. Values in the Low range
should be representative of conditions that, if maintained for pro-

longed periods, may lead to system failure. Values in the High
range of concern should be representative of conditions that are
cause for raised awareness and expeditious corrective action, and
are indicative of a short period of time before system failure. Pa-
rameter values within the Fail Category of Concern imply that
prolonged operations under such conditions will result in immi-
nent system failure. The information for the case study analysis
is organized in Table 3. The probability of the initiating event be-
ing analyzed resulting in each of the three defined categories is
determined (σ -values). These values are also present in Table 3.
It should be noted that, while parameter values that directly relate
to physical system parameters are useful for system designers to
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FIGURE 3. FUNCTIONAL BLOCK DIAGRAM OF THE RCCL SYSTEM (STEP 1).

FIGURE 4. FFIP FAULT PROPAGATION PATH

more deeply consider the Categories of Concern, in the earliest
stages of functional modeling before many of these parameters
are set, it is sufficient to only use the Normal, Low, High, and Fail
Categories of Concern with representative estimates of σ values.

Step 4: Detector Failure Probabilities (DFP)

DFPs represent the probability of PHM detectors in the sys-
tem failing to detect PHM parameter changes during a Category
of Concern failure event. These values reflect each potential
PHM sensor configuration being analyzed for comparison in Step
8. The DFPs used to analyze the case study RCCL system with

three PHM devices (Th, Tc, and PL) installed are listed in Table
4 below. Note that similar tables are generated for each potential
PHM system configuration (e.g.: Th, Tc; Th, PL; Tc, PL; etc.).

Step 5: Determine “ε” Values The ε values represent the
probabilities of various system components failing before plant
operators have time to correct the fault by taking a recovery ac-
tion. The generated ε values for the functional heat flow fail-
ure being analyzed in this case study (representative of a gradual
fouling of heat transfer surfaces on the S/G U-tubes) are listed in
Table 5 below.
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FIGURE 5. FUNCTIONAL MODEL OF THE RCCL SYSTEM, ILLUSTRATING ONE POTENTIAL CONFIGURATION OF PHM INSTRU-
MENTATION TAPS AND SIGNAL FEEDS (STEP 2).

TABLE 3. RANGES DEFINING CATEGORIES OF CONCERN AND σ -VALUES

Category of Concern

PHM Device Normal Low High Fail Units

Th 390-410 370-390; 410-430 350-370; 430-450 < 350;> 450 Deg. F

Tc 340-360 320-340; 360-380 300-320; 380-400 < 300;> 400 Deg. F

PL 1900-2100 1700-1900; 2100-2300 1500-1700; 2300-2500 < 1500;> 2500 psi

LB1 < 0.1 0.1-0.5 0.5-1.0 > 1.0 gph

LB2 < 0.1 0.1-0.5 0.5-1.0 > 1.0 gph

PNM < 2.0 2.0-4.0 4.0-6.0 > 6.0 dB > background

σ -values 0.7 0.25 0.05

Step 6: Determine RFF Values
The RFF values represent the probability of an operator’s

actions or inactions failing to restore the plant to normal operat-
ing conditions. Three values are defined per failure mode: one
for each Category of Concern (Low, High, Fail). For this case
study, the values used to analyze heat flow failure are as follows:
RFFLOW = 0.2,RFFHIGH = 0.25,RFFFAIL = 0.32.

Step 7: Cut Set Analysis
For illustrative purposes in this case study, only one group of

cut sets will be expanded upon in this section in order to demon-

strate the process. This group is representative of the failure
probabilities of the MCP during a heat flow failure, with three
PHM devices installed. Figure 6 provides an example illustrat-
ing one of the various cut set flow paths analyzed for this group.
Cut set results can be found in Table 7.

Separate sets of cut sets for this scenario are generated for
the following prospective PHM configurations: (Th), (Th,Tc),
(Th, PL), (Tc), (Tc, PL), (PL). For each cut set analysis, the DFP
used is the direct product of the individual DFPs of the PHM
devices within the given configuration. Each configuration and
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TABLE 4. DFP: DETECTORS (Th, Tc, PL)

Category of Concern

Detectors Low High Fail

Th 0.1 0.02 0.0001

Tc 0.08 0.005 0.0001

PL 0.4 0.2 0.1

All Fail 0.0032 2.00E-05 1.00E-09

TABLE 5. HEAT FLOW FAILURE ε VALUES

Category of Concern

Functions Low High Fail

MCP 0.2 0.4 0.85

S/G 0.1 0.3 0.72

RX 1.00E-07 5.00E-05 2.00E-04

RCI-1 0.0001 0.0005 0.001

RCI-2 0.0002 0.0006 0.002

FIGURE 6. EXAMPLE CUT SET FLOW PATH

its corresponding DFP is listed in Table 6.
Step 8: Compare Method Results The results of the vari-

ous PHM configurations’ cut sets are compared with the results
from the FFIP analysis and between each other. The results of
each PHM configuration are compared to aid in identification of
the most useful combination of PHM devices for the system. Re-
sults of the case study are presented and discussed in the next
section.

5 RESULTS AND DISCUSSION
In the previous section, cut set analysis was performed on

the various failure paths of Figure 4 above, with PHM sensors in-
serted in various configurations. Table 7 presents the case where
three PHM sensors have been placed in the system and analyzed
for their reduction in system failure probability which now stands

TABLE 6. DFP VALUES FOR VARIOUS PHM CONFIGURA-
TIONS

Category of Concern

PHM Configurations Low High Fail

Th 0.1 0.02 1.00E-04

Th, Tc 0.008 1.00E-04 1.00E-08

Tc 0.08 0.005 1.00E-04

Th, PL 0.04 0.004 1.00E-05

PL 0.4 0.2 0.1

Tc, PL 0.032 0.001 1.00E-05

at 4.10E-8. For comparison, the FFIP analysis produced a sys-
tem failure probability of 1.22E-7/yr without any PHM hardware
being present.

TABLE 7. CUT SET RESULTS FOR THREE PHM SENSORS

Failure/yr Cut Sets

4.10E-08 System Failure Probability

1.22E-08 IE Heat Flow Fail,Cat High,MCP Fail B4

1.71E-08 IE Heat Flow Fail,Cat Low,MCP Fail B4

5.19E-09 IE Heat Flow Fail,Cat Fail,MCP Fail B4

4.58E-09 IE Heat Flow Fail,Cat High,Response Fail (High)

1.37E-09 IE Heat Flow Fail,Cat Low,Response Fail (Low)

2.93E-10 IE Heat Flow Fail,Cat Fail,Response Fail (Fail)

2.73E-10 IE Heat Flow Fail,Cat Low,Det All Fail LOW

6.10E-13 IE Heat Flow Fail,Cat High,Det All Fail HIGH

6.10E-18 IE Heat Flow Fail,Cat Fail,Det All Fail FAIL

Once cut set analysis of all potential PHM sensor configura-
tions is complete (in this case study, only three sensors were fully
analyzed for simplicity), a comparison can be made between dif-
ferent configurations, as shown in Table 8. It is interesting to note
that all but one potential sensor configuration lowers system fail-
ure risk by an order of magnitude from the FFIP base case. This
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is as a result of operator recovery actions or automated system
recovery actions occurring successfully once a Category of Con-
cern failure state is identified by the PHM system. The greatest
reduction in system failure risk is found in the three PHM sensor
configuration (Th, Tc, PL). However, the two sensor configu-
ration (Th, Tc) has very similar system failure risk. A system
designer may choose to only install the Th and Tc PHM sen-
sors rather than all three if the cost of the third sensor is high1.
In a fully computer automated system analysis, a cost-versus-
risk-reduction algorithm can be used to determine the tradeoff
between sensor configurations and sensor costs.

TABLE 8. SYSTEM FAILURE PROBABILITIES FOR DIFFER-
ENT PHM SYSTEM CONFIGURATIONS

Failure/yr Configuration

1.22E-07 FFIP Base Case

4.10E-08 Th, Tc, PL

4.50E-08 Th, Tc

7.95E-08 Th, PL

8.21E-08 Tc, PL

8.23E-08 Th

8.45E-08 Tc

1.02E-07 PL

By performing analysis with the PSVCC method presented
in this paper, a clearer and more representative picture of system
failure risk can be determined in the early phases of complex
system design. Including PHM systems in the early stages of
analysis allows for intelligent system architecture choices to be
made. PRA methods are difficult to use in the earliest phases of
design and PRA models are hard to rapidly reconfigure to explore
alternative PHM configurations. FFIP and related functional fail-
ure methods do not have an explicit method of representing and
analyzing PHM systems. Neither PRA nor FFIP represent Cat-
egories of Concern failures explicitly or usefully. The method
presented in this paper provides system designers with analysis
of many potential PHM configurations and resulting system risk
reductions while explicitly modeling Categories of Concern fail-
ures.

1Note that in a complete analysis of the RCCS, all three sensors (Th, Tc,
PL) are found to be necessary for the complete suite of initiating events that can
impact the RCCS

6 CONCLUSIONS AND FUTURE WORK
The PSVCC method presented in this paper provides system

designers with a tool to more fully analyze system failure risk in
the early phases of complex system design by examining the con-
tribution of PHM systems and recovery actions to overall system
reliability. Existing methods such as PRA and FFIP are difficult
to use at the earliest stages of design and are unable to explicitly
represent PHM systems or recovery actions. The PSVCC method
presented here allows system designers to rapidly analyze multi-
ple PHM system configurations and identify the most appropriate
configuration for the system. Early knowledge of PHM system
configuration will save designers time and money as compared
to current systems engineering methods that leave PHM system
design until much later in the design process.

Future work includes the development of an automated tool
to place PHM sensors in a system functional model and develop
automated recovery functions with minimal need for designer in-
put. A fully automated PHM system design and analysis tool has
the potential to discover new PHM system configurations and re-
covery actions that can further reduce system failure risks. While
defense in depth strategies and multiple redundant systems are
useful for reducing system failure risk, well-designed PHM sys-
tems also play an important role in complex system design.

ACKNOWLEDGMENT
This research was partially supported by United States Nu-

clear Regulatory Commission Grant Number NRC-HQ-84-14-
G-0047. Any opinions or findings of this work are the responsi-
bility of the authors, and do not necessarily reflect the views of
the sponsors or collaborators.

REFERENCES
[1] Coble, J. B., Ramuhalli, P., Bond, L. J., Hines, J., and Upad-

hyaya, B., 2012. Prognostics and health management in
nuclear power plants: a review of technologies and appli-
cations. Pacific Northwest National Laboratory.

[2] Pecht, M., 2008. Prognostics and health management of
electronics. Wiley Online Library.

[3] Goebel, K., Saha, B., Saxena, A., Celaya, J. R., and
Christophersen, J. P., 2008. “Prognostics in battery health
management”. IEEE instrumentation & measurement mag-
azine, 11(4), p. 33.

[4] Schwabacher, M., 2005. “A survey of data-driven prognos-
tics”. In Proceedings of the AIAA Infotech@ Aerospace
Conference, pp. 1–5.

[5] Poll, S., Patterson-Hine, A., Camisa, J., Garcia, D., Hall,
D., Lee, C., Mengshoel, O. J., Neukom, C., Nishikawa, D.,
Ossenfort, J., et al., 2007. “Advanced diagnostics and prog-
nostics testbed”. In Proceedings of the 18th International

10 Copyright c© 2015 by ASME



Workshop on Principles of Diagnosis (DX-07), pp. 178–
185.

[6] Saxena, A., Celaya, J., Saha, B., Saha, S., and Goebel, K.,
2009. “On applying the prognostic performance metrics”.

[7] Coble, J. B., and Hines, J. W., 2008. “Prognostic algorithm
categorization with phm challenge application”. In Prog-
nostics and Health Management, 2008. PHM 2008. Inter-
national Conference on, IEEE, pp. 1–11.

[8] Ben-Daya, M., 2009. “Failure mode and effect analysis”. In
Handbook of Maintenance Management and Engineering,
M. Ben-Daya, S. O. Duffuaa, A. Raouf, J. Knezevic, and
D. Ait-Kadi, eds. Springer London, pp. 75–90.

[9] Stamanis, D. H., 2003. Failure Modes and Effects Analysis:
FMEA from Theory to Execution, 2nd ed. ASQ Quality
Press, Milwaukee, WI.

[10] Robidoux, R., Xu, H., Xing, L., and Zhou, M., 2010. “Au-
tomated modeling of dynamic reliability block diagrams
using colored petri nets”. Systems, Man and Cybernet-
ics, Part A: Systems and Humans, IEEE Transactions on,
40(2), March, pp. 337–351.

[11] Hamada, M. S., Wilson, A. G., Reese, C. S., and Martz,
H. F., 2008. Bayesian Reliability. Springer.

[12] Kumamoto, H., 2007. Satisfying Safety Goals by Proba-
bilistic Risk Assessment. Springer.

[13] Fleming, K. N., and Silady, F. A., 2002. “A risk informed
defense-in-depth framework for existing and advanced re-
actors”. Reliability Engineering & System Safety, 78, July,
pp. 205–225.

[14] Bakolas, E., and Saleh, J. H., 2011. “Augmenting defense-
in-depth with the concepts of observability and diagnosabil-
ity from control theory and discrete event systems”. Relia-
bility Engineering & System Safety, 96(1), pp. 184–193.

[15] Zio, E., 2009. “Reliability engineering: Old problems and
new challenges”. Reliability Engineering & System Safety,
94(2), pp. 125 – 141.

[16] Modarres, M., Kaminskiy, M., and Krivtsov, V., 1999. Re-
liability engineering and risk analysis: a practical guide.
CRC press.

[17] Keller, W., and Modarres, M., 2005. “A historical overview
of probabilistic risk assessment development and its use in
the nuclear power industry: a tribute to the late professor
norman carl rasmussen”. Reliability Engineering & System
Safety, 89(3), pp. 271 – 285.

[18] Swain, A. D., and Guttmann, H. E., 1983. Handbook of
human-reliability analysis with emphasis on nuclear power
plant applications. final report. Tech. rep., Sandia National
Labs., Albuquerque, NM (USA).

[19] Dougherty, E., and Fragola, J., 1988. “Human reliability
analysis”.

[20] Swain, A. D., 1990. “Human reliability analysis: need,
status, trends and limitations”. Reliability Engineering &
System Safety, 29(3), pp. 301–313.

[21] Stone, R. B., and Wood, K. L., 2000. “Development of a
functional basis for design”. Journal of Mechanical Design,
122(4), pp. 359–370.

[22] Stone, R. B., Wood, K. L., and Crawford, R. H., 2000. “Us-
ing quantitative functional models to develop product archi-
tectures”. Design Studies, 21(3), pp. 239–260.

[23] Hirtz, J. M., Stone, R. B., Szykman, S., McAdams, D., and
Wood, K. L., 2001. “Evolving a functional basis for engi-
neering design”. In Proceedings of the ASME Design Engi-
neering Technical Conference: DETC2001, Pittsburgh, PA.

[24] Hirtz, J., Stone, R. B., McAdams, D. A., Szykman, S., and
Wood, K. L., 2002. “A functional basis for engineering de-
sign: reconciling and evolving previous efforts”. Research
in engineering Design, 13(2), pp. 65–82.

[25] Stone, R. B., Tumer, I. Y., and Stock, M. E., 2005. “Linking
product functionality to historic failures to improve failure
analysis in design”. Research in Engineering Design, 16(1-
2), pp. 96–108.

[26] Hutcheson, R. S., McAdams, D. A., Stone, R. B., and
Tumer, I. Y., 2006. “A function-based methodology for an-
alyzing critical events”. In Proceedings of the IDETC/CIE.

[27] Kurtoglu, T., and Tumer, I. Y., 2008. “A graph-based fault
identification and propagation framework for functional de-
sign of complex systems”. Journal of Mechanical Design,
130(5), p. 051401.

[28] Jensen, D., Tumer, I. Y., and Kurtoglu, T., 2009. “Flow
state logic (fsl) for analysis of failure propagation in early
design”. In ASME 2009 International Design Engineering
Technical Conferences and Computers and Information in
Engineering Conference, American Society of Mechanical
Engineers, pp. 1033–1043.

[29] Kurtoglu, T., Tumer, I. Y., and Jensen, D. C., 2010. “A
functional failure reasoning methodology for evaluation of
conceptual system architectures”. Research in Engineering
Design, 21(4), pp. 209–234.

[30] Distefano, S., and Puliafito, A., 2009. “Dependability eval-
uation with dynamic reliability block diagrams and dy-
namic fault trees”. Dependable and Secure Computing,
IEEE Transactions on, 6(1), Jan, pp. 4–17.

[31] Ramachandran, G., and Charters, D., 2011. QUANT RISK
ASSESS FIRE SAFETY. Taylor & Francis.

[32] Samuels, P., Huntington, S., Allsop, W., and Harrop, J.,
2008. Flood Risk Management: Research and Practice:
Extended Abstracts Volume (332 pages) + full paper CD-
ROM (1772 pages). Taylor & Francis.

[33] Soares, C., 2010. Safety and Reliability of Industrial Prod-
ucts, Systems and Structures. A Balkema Book. Taylor &
Francis.

[34] Bedford, T., and Cooke, R., 2001. Probabilistic Risk As-
sessment: Foundations and Methods. Cambridge Univer-
sity Press.

[35] Ramp, I. J., and Van Bossuyt, D. L., 2014. “Toward an auto-

11 Copyright c© 2015 by ASME



mated model-based geometric method of representing func-
tion failure propagation across uncoupled systems”. In Pro-
ceedings of the ASME 2014 International Mechanical En-
gineering Congress and Exposition IMECE2010, ASME.

[36] O’Halloran, B., Papakonstantinou, N., and Van Bossuyt,
D. L., 2015. “Modeling of function failure propagation
across uncoupled systems”. In Proceedings of the Relia-
bility and Maintainability Symposium.

[37] NRC Staff, 2007. Tutorial on probabilistic risk assessment
(pra). Tech. rep., Nuclear Regulatory Commission.

12 Copyright c© 2015 by ASME

View publication stats

https://www.researchgate.net/publication/282133441

