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SUMMARY & CONCLUSIONS 

This paper explores how reliability analysis and cyber-security 
analysis can be combined using Artificial Intelligence and 
Machine Learning (AI/ML), and Large Language Models 
(LLM) to produce a continuously updated resilience analysis. 
This is achieved by modeling both the hardware and software 
of the system, and employing LLMs and AI/ML to 
continuously search for new software vulnerabilities and feed 
that information into continuously updating resilience models.  
A case study of a drone is presented that demonstrates the 
promise of the proposed method.  It is expected that using the 
proposed method, named Assessment for Risk in 
Cybersecurity and Safety - Resilience (ARCS-R), will reduce 
failure rate of mission-critical cyber-physical systems by 
reducing the likelihood of a potential initiating event causing a 
prolonged degradation in system performance that impacts 
system resilience. 

1 INTRODUCTION 

Modern cyber-physical mission-critical socio-technical 
systems must operate in a rapidly evolving and worsening 
dynamic threat environment.  Further, such systems continue to 
increase in complexity both from a hardware and a software 
perspective.  The introduction of AI/ML has added a new 
element of risk that can cause systems to fail in new and 
unexpected ways.  Practitioners are challenged to evaluate the 
combined failure probability of a system when considering both 
reliability and security from a system resilience perspective. 

Safety engineering has exploited decades worth of 
reliability data on the behavior of materials, components, 
devices and systems to establish libraries of failure probabilities 
and mechanisms which were used to develop an extensive and 
thorough set of failure modelling and safety assessment 
methods and analyses. Of special interest to this paper is the 
well-known “bathtub” curve which is a failure rate graph that 
captures the typical lifecycle reliability phases of a system 
starting from infant mortality when a system first comes online, 

and then moves into the random failures phase during the main 
part of the system’s lifecycle, and lastly moves into the wear-
out failures phase near the end of life of the system. 
Unfortunately, in the security domain from a cyber perspective, 
the threat environment is very volatile and thus the challenge of 
risk modelling is more complex and dynamic. A significant part 
of this challenge is the rapid collection and processing of 
information as well as a good awareness of the system under 
study. 

While AI/ML technologies have had disruptive effects on 
the cyber security of systems, recent developments of LLM - 
based AI have shaken the traditional status quo with disruptive 
extensions to cyber security threats, assessment, design, and 
operation.  This paper explores what role that LLM – based AI 
can play in increasing the cadence of failure rate modeling of 
critical systems. The research presented here focuses on the 
challenge of modeling a reliability curve for the lifetime of the 
system, including reliability and cybersecurity events. It has 
been observed that when a new software intensive cyber-
physical system is deployed, there are many vulnerabilities 
linked to bugs and design/implementation errors that can lead 
to system failures. Then there is a more secure period where the 
early issues are addressed (patched/fixed).  Towards the end of 
the system’s life there is again a more dangerous period when 
system software/hardware components become 
deprecated/obsolete, people who can maintain/fix the code have 
left, the attack tools/methods have become better in bypassing 
defenses, confidential info about the system’s security may 
have been leaked, etc.  This produces a similar picture to the 
classic “bathtub curve” of system reliability.  However, we have 
observed that in recent years, even well-resourced cyber-
physical systems can have premature failure due to 
cybersecurity issues due to the rapidly increasing velocity of 
cyberattack development.  Often, cybersecurity audits are 
conducted on a semi-annual basis for industrial cyber-physical 
systems; however, LLM-based AI may significantly increase 
the needed frequency of analysis to understand the current 



failure curve so that appropriate remediation steps can be taken 
if needed. 

The scientific contribution of this paper is an early study of 
the information needed to extend the traditional reliability 
bathtub curve to also include cybersecurity-related events. The 
paper identifies which parameters may be relevant; how to 
develop dynamic reliability curves based on the cyber threat 
landscape; whether tools like LLM-based AI, possibly 
combined with an expert panel of humans, can help to quickly 
update the reliability curve; and how a high-level overview 
model of a system can be used to represent the current and 
forecasted resilience of a system on a per system function basis. 

A case study of an internet-connected industrial inspection 
drone with AI/ML components located at a remote, uncrewed 
installation is presented.  The drone is connected via the open 
internet and a virtual private network to several resources.  The 
case study shows that the proposed methodology (ARCS-R) 
can better forecast resilience of the system by combining 
reliability and cybersecurity analyses. 

2 LITERATURE REVIEW 

This section provides a review of background information 
and related research necessary to the research in this paper. 

2.1 Resilience engineering 

The engineering of resilient systems has seen a surge in 
interest over the last several years, especially in the critical 
infrastructure sectors [1].  Resilience is generally defined as the 
ability of a system to recover from an event that causes partial 
or total loss of system performance [2]. In the context of cyber-
physical mission-critical systems, resilience is yet another “-
ility” that must be balanced when conducting trade-off studies 
in conceptual systems design [3].  In plain language, resilience 
is the ability of a system to take a punch, recover, and resume 
operations at an acceptable level.  Generally, one or multiple 
initiating events (sometimes called disturbances), either at the 
same time or over a period of time, causes system performance 
to degrade beyond nominal bounds.  Then the system enters a 
stabilization phase where degradation is stopped, and a new 
baseline system performance is established – this baseline 
performance is often well below acceptable performance for the 
system.  Next, the system enters a recovery phase where 
performance increases until it reaches an acceptable level.  
Finally, the system enters a post-recovery operation phase 
where either the system is back to its pre-disturbance 
performance level or stabilizes at an acceptable performance 
level. 

Resilience improvements are implemented in the pre-
disturbance phase before the initiating event has occurred.  
Engineering analysis of potential initiating events that can 
challenge a system’s resilience is conducted to determine 
potential failure scenarios that must be addressed. Then 
engineers develop mitigation strategies to either avoid the 
initiating event(s), arrest the performance degradation before it 
reaches an unacceptable level, or implement remediation 
measures to more quickly recover the system to acceptable 
levels of performance after the system is stabilized at the new 

lower baseline [4]. 

2.2 Software security 

Today, software is a key component across systems and the 
interconnections between them, including control of 
traditionally hardware components. With this dependency 
comes an added risk: any vulnerability in the code could lead to 
a vulnerability in the overall system, system failure, and safety 
hazards for personnel. Software supports automation, 
monitoring, and overall increased ease of use for systems – but 
introduces a complexity that would not otherwise be present. 
Moreover, with multiple code instances running on different 
components and cross-feeding information, a further increase 
in system complexity is introduced, and that complexity can 
make detection of potential vulnerabilities difficult [5]. To 
address this, multiple approaches and considerations have been 
introduced and proposed to assist in the vetting of software and 
continuous monitoring for identification of potential 
vulnerabilities. 

Software security starts at the time of development, which 
offers an opportunity to build in a zero-trust approach early on 
[6-8]. A controlled software development platform can control 
who can develop and add to the code and view it [9-10], 
minimizing the risk of unintended injects by malicious actors. 
Version tracking can further support not only the developer in 
their ability to roll back to older versions of the code or branch 
off copies, but also source tracking on the software being 
developed; maintainers can see when and who edited the code 
and what changes they made, meaning that the possible issues 
can be more easily determined if an insider threat is eventually 
identified.  

More recently, software tracking and source identification 
has taken on the term Software Bill of Materials (SBOM) [11]. 
For a given program, an SBOM should identify who 
implemented what code and when, what entities had either read 
or write access throughout the stages of code development, and 
what security tests were performed to assess the code, as well 
as SBOMs for any externally developed code that is brought 
into the development process. Thus, an SBOM may have 
dependencies on other SBOMs, creating a nested set of 
documentation for the final end product. Naturally, the 
existence of an SBOM has little meaning if it is not used; thus, 
the SBOM should not only be checked by an unbiased security 
expert before the software is deployed, but it should also be 
referenced throughout the lifetime of the software and issues 
come to life (e.g., vulnerabilities are identified that could affect 
externally developed code dependencies, insider threats who 
may have had access, etc.). 

Another security approach applied during the development 
process is often termed DevSecOps [12], namely that the 
developer works with the cybersecurity expert and end operator 
during the code development. As in other fields, software 
programming is an expertise of its own and it is a faulty 
approach to assume that the same person has sufficient security 
expertise for the needed use case. Furthermore, even if the 
programming and security approach are sound, they may be 
insufficiently tailored to the use case, which in itself can create 



risk hazards. Thus, DevSecOps, as a concept, is born from a 
motivation to ensure good code is developed in a way that is 
also secure within the use case needs.  

Ultimately, the above methods are intended to minimize 
software risks before deployment; however, software security 
does not stop once the coding is complete. Due to potential 
human error, as well as unanticipated vulnerabilities in the code 
dependencies or interdependencies once in the deployment 
system (i.e., zero days), software security is a continuous 
undertaking. Some companies employ red teams and white hat 
hackers to try to identify vulnerabilities in the system(s). 
Bounty hunting, e.g., via gray hat hackers, may also be 
employed as a means to encourage skilled individuals to report 
issues that they have found [13]. Finally, if malicious entities, 
e.g., black hat hackers, identify and try to exploit vulnerabilities 
in a system and are detected, a company may register the 
vulnerability themselves. Frequently, companies are under an 
ethical, business, and even legal obligation to disclose 
vulnerabilities and patches for them regardless of how the issue 
was discovered – this enables end-users to patch software and 
other companies to harden their own systems from attacks. 
Once such reporting method is through the Common 
Vulnerabilities and Exposures (CVEs) program originally 
launched by MITRE [14]. Vulnerabilities that are reported are 
assigned a CVE number and logged with a public description 
of the issue, implications, and how it was fixed (if a patch has 
been deployed). 

2.3 Software source code analysis tools 

Software is an important part of any system and thereby 
keeping the software secure is the ultimate goal of almost every 
organization. Yet, we encounter security issues like data leaks, 
credentials theft, and etc. Static Analysis Security Testing 
(SAST) helps in preventing security issues while the software 
is in its development phase. SAST analyses source code for 
vulnerabilities also it helps developers who are from non-
security background to keep the source code secure and also 
avoid insecure programming patterns [15]. 

Tools like Snyk help in such SAST analysis by providing 
Scans in early development phase, to indicate the issue in the 
source code also explain the issue found. They help in 
identifying the issues without the need for executing the code. 
It also helps in automating the scanning of source code files at 
any point of Software Development Life Cycle (SDLC) [16]. 

SAST also checks for code issues & security 
vulnerabilities, quality of documentation, consistency with 
overall software design, compliance and best programming 
practices, violation of rules that affect code execution, quality 
aspect of software like system complexity or maintainability.  

2.4 Vulnerability forecasting 

Vulnerability forecasting is done based on the volume of 
CVEs being produced within discrete time spans and it requires 
only 8% of the value between now and a year from now. There 
are multiple predictive algorithms to predict data for monthly, 
quarterly, annually, and other periods. The main forecasting is 
done with the data of publicly disclosed vulnerabilities. The 

primary purpose of CVEs is to reduce the risk in vulnerability 
management. The vulnerability of computers or networks can 
be predictive based on the unpatched vulnerabilities. There can 
also be many undiscovered/disclosed vulnerabilities in software 
which can occur during software development lifecycle or can 
be intentional too to make the quality team find but eventually 
they were unidentified. The other type of vulnerabilities can 
occur due to vendor specific product/software.   

In [17] the authors strictly took the data from 2016 and 
training data up to the end of 2015. The 2016 data employs root 
mean squared percentage error (RMSPE) for validation and 
includes larger categories, including all vulnerabilities, browser 
CVEs, operating system CVEs, and video codec CVEs. metric 
achieving a median of 15% RMSPE for global vulnerability 
predictions over 24 months. This approach predicts cumulative 
CVEs of all time which makes the percentage of error metrics 
not consistent over time.  

To predict the number of CVEs as a whole as well as sub-
types of CVEs across different time spans (1 month, 3 months, 
half yearly, and annually) different models are required. 
Predictive model can be a good method but limited to lab data 
set only. Performing standard time series and forecasting 
analysis using predictive models which involves both statistical 
and machine learning models. To exploit the metadata from the 
CVE database minimum variance unbiased estimator (MVUE) 
and Little's Law exit rate [18] are used.  

In the case of Adobe Acrobat Reader, the Mean Absolute 
Error for a period of 12 months was 163 with combined model. 
For Microsoft Windows 10 it was 156. Similarly for Linux 
Kernal it was 191.  

Thus, the choice of predictor is validation set-based even 
for the combined model. 

 

3 METHODOLOGY 

The backbone of the proposed ARCS-R methodology is the 
combination of safety and security towards an overall resilience 
risk assessment as shown in Fig. 1. While the combined system 
failure probability due to component failures is a function of 
time (shown as phases of the classic “bathtub” failure rate 
graphic [19]), in the cyber world the conditions are much more 

 

 
Figure 1: The Combination of Reliability and Cyber-Security 
into Resilience 



dynamic. The threat landscape, the software configuration, and 
new cyber threat intelligence inputs can substantially affect the 
overall cyber risk assessment of the system as shown in Fig. 2. 
Apart from the known vulnerabilities, unknown ones can be 
expected to exist, taking into consideration the lifecycle phase 
of the software used (early versions vs mature releases vs near 
end-of-life usage), its complexity, its popularity, and its 
attractiveness as a target, as shown in Fig. 3. 

 

The proposed ARCS-R methodology shown in Fig. 4 
contains two parallel tracks, one related to safety/reliability and 
one for cyber security. Step 1.1 is part of the traditional safety 
engineering work and more specifically the development of a 
model (topology, behavior and internal/external interactions) to 
be used for calculating the reliability of the system. Step 1.2 
calls for a similar activity, but this time focusing on the cyber 
aspect of the system. Step 1.3 provides a source code version of 
1.1. and 1.2, namely moving the reliability assessment a further 
layer down into the code itself. In Step 2.1 the practitioner 
performs a reliability assessment given the system model and 
information about the components to estimate the failure rate 
graph. In the cybersecurity side, the software is tested in Step 
2.2.1 using white box, black box or grey box techniques [20] to 
identify as many as possible existing vulnerabilities. After the 
security testing process has been performed over a large enough 
period of time, a vulnerability forecasting method like the 
Vuln4Cast [17] can be used in Step 2.2.2 to provide a statistical 
prediction of the vulnerabilities to be discovered in the future.  

The LLM code generation foundation model can be trained 
on the language(s) of our software components, and can be fine 
tuned on those software components themselves. The prompt to 
the LLM can include the particular piece of code to be analyzed 
along with a general request to search for and patch 
vulnerabilities. Vulnerability databases are included via 
Retrieval Augmented Generation (RAG). A second adversarial 
LLM can be used to write and/or run tests to demonstrate the 

performance of the new code – that it still works as intended 
and that the vulnerability no longer exists. It then falls to the 
practitioner to assess the outcomes and provide a circuit breaker 
against automating the introduction of new defects. In the 

context of the ARCS-R methodology, this approach can be 
performed over the entire software bill of materials and used to 
create reliability and security statistics over the full system. 

Step 2.2.1 is interesting to describe further. In white box 
software security testing, a tool like the Shift Left Scan [21] can 
perform a static application security testing by analyzing the 
source code for potential vulnerabilities. The same tool supports 
black box testing where the goal is to discover vulnerabilities in 
the functionalities of the software while it is running. In 
addition, a dependency-based tool like SNYK [22] can discover 
vulnerabilities by checking the library dependencies of a 
software project against Common Vulnerabilities and 
Exposures (CVEs) databases (like VulDB [23] or NIST/NVD 
[24]) and then compile a report summarizing the results, often 
with a priority label based on a scoring method like the 
Common Vulnerability Scoring System (CVSS) [25].  

In step 2.2.2 a tool like Vuln4Cast can be used to forecast 
vulnerabilities monthly, quarterly, or yearly based on the 
vulnerabilities discovered so far. This method is still in active 
development and its predictive algorithms have been used for 
software products like operating systems (Windows, MacOSX, 
Linux kernel) as well as smaller products like Adobe Acrobat 
[17]. Its applicability is constrained mainly on the availability 
of a large enough data set of discovered CVEs over time. 

The results of Step 2.1 and 2.2.2 are combined in Step 3 to 
provide an overall resilience forecast. 

4 CASE STUDY 

A case study of an internet-connected industrial inspection 
drone with AI/ML components is now presented.  The drone is 
connected via the open internet back to the manufacturer for 
usage data, maintenance and diagnostic purposes, and asset 
management.  In addition, it is connected via a company virtual 

 
Figure 3: Cybersecurity – unknown threats 

 
Figure 4: Methodology 

 
 

Figure 2: Reliability/Cyber-security as a function of time. 



private network to a remote control facility where the drone’s 
data is processed and analyzed.  The drone conducts periodic 
assessment and site surveys of a remote industrial facility that 
typically operates without a human presence such as petroleum 
production fields, flood control infrastructure, or similar.  It 
follows a fixed patrol route that it can optionally deviate from 
when an anomaly warranting further inspection is detected.  A 
traditional bathtub curve reliability analysis indicates the drone 
can operate at the remote industrial facility for several years 
with only minimal maintenance.  However, the increased 
cadence of cyberattacks has led to the potential of cybersecurity 
related vulnerabilities that could impact the AI/ML components 
aboard the drone.  This could cause the drone to malfunction 
and fail which could lead to both the loss of the drone as an 
asset and also damage to the industrial facility.  The company 
currently does a security audit every six months and updates the 
AI/ML and cyber components on an as-needed basis based on 
the security audit. However, the company lacks resources for 
in-depth cybersecurity assessment related to the drone, as it is a 
minor part of a complex system within the management scope. 
Thus, an LLM-based AI is then introduced to continuously scan 
the internet for information related to the cyber components 
aboard the drone as well as any specific AI-based threats that 
should be considered at the next audit.  The LLM-based AI 
further can analyze how CVEs impact system functionality, and 
produces a new reliability curve to help communicate 
information to the team tasked with keeping the drone secure 
and operational.  This allows the team to more rapidly address 
cybersecurity threats and delay addressing threats that will not 
cause an immediate threat to the drone system.  The case study 
next picks up at Step 1 of the proposed ARCS-R methodology.  

Step 1.1: Reliability System Models 
System reliability models are developed of the drone. A 

reliability block diagram is developed, individual component 
reliability data is either identified from existing data sources or 
developed through accelerated lifecycle testing.  Dependencies 
and interfaces between the system hardware (e.g.: motors, 
batteries, controllers, etc.) and the system software are 
identified.  

Step 1.2: System Security Models 
The system interaction, including communication links, 

user interfaces, device internal software module interactions, is 
modeled to identify device internal dependencies and to provide 
a foundational design vulnerability analysis. While code review 
in later steps will be used to identify issues in the code itself, 
this step ensures that the type of code is appropriate to the 
system design and threat model. 

Step 1.3: Software System Models 
The source code for the drone is collected and analyzed to 

develop a software bill of materials.  This is a common 
cybersecurity requirement and audit method found in industry 
and government guidance. The software system models identify 
package dependencies as well as any published vulnerabilities 
in those dependencies. This step does not include any new 
software analysis, but identifies known vulnerabilities. The 
package dependencies can be used in the future to scan for new 
vulnerabilities as they are identified in the software packages. 

Step 2.1: Reliability Engineering 
The reliability models indicate that the drone’s reliability 

follows the classic “bathtub curve” where, after an initial 
“infant mortality” phase, the drone is expected to have a long 
service life with low random failure.  At the end of the service 
life, the drone enters the “wear-out” phase of reliability where 
components increasingly fail as the reach end of life. 

Step 2.2.1: Software Security Testing 
 Next software security testing is performed. This goes 

hand-in-hand with the AI/ML model development, any new 
software development, and new software analysis tests on the 
dependencies identified in Step 1.2. This may include use of 
fuzz testing tools and an AI/ML vulnerability analysis.  

Step 2.2.2: Vulnerability Forecasting 
Vulnerability forecasting is now conducted.  In this case 

study, ShiftLeft code analysis is used.  However, many different 
vulnerability techniques are available in the literature. 

ShiftLeft code analysis does various sorts of analysis using 
a single code representation known as a "code property graph." 
Various approaches like Data Flow analysis, Control Flow 
analysis, Taint analysis, Lexical analysis, Configuration 
analysis, and Buffer overflow analysis, are typically used to do 
static analysis. On the other hand, ShiftLeft starts by 
constructing the code property graph (CPG), a single data 
structure. Through this single data structure (code property 
graph), it then does all of the aforementioned analysis on the 
complete code base (third-party libraries, open-source code), 
achieving enormous time/memory savings and thus saving time 
on code analysis. It's possible that a Shift Left testing strategy 
can't always give the best performance and functionality in a 
real-world setting. A Shift Right testing technique may be 
helpful in these circumstances. 

The benefits of ShiftLeft scan can be Faster delivery, 
Improved security posture, Reduced costs, improving security 
integration and pace, Enabling trust in the overall software. 
Additionally, ShiftLeft scan reduces cost involved in fixing 
issues lately in CI/CD pipelines. 

The set of open-source projects scanned using Snyk for 
dependency-based analysis shows us that the vulnerabilities for 
open-source code or software code are generally dependent on 
dependencies too. The more the dependencies which have 
unsolved vulnerabilities, the more insecure the program or 
source code becomes thereby affecting the system in which the 
software present or works for. In turn this can affect the entire 
network or production systems which when used for Live 
systems without patching vulnerabilities. 

Step 3: Resilience Forecasting 
Finally, the results of the reliability engineering and 

vulnerability forecasting steps are combined.  Fig. 5 shows how 
the classic reliability “bathtub” curve can change with 
vulnerability forecasting, and further shows how the reliability 
curve can change over time as the LLM continuously scans for 
new software vulnerabilities.  This can be fed into a resilience 
calculation to develop updated resilience information as shown 
in Fig 6. 



5 CONCLUSION AND DISCUSSION 

This paper has proposed a new way of automatically 
assessing reliability and vulnerability of cyber-physical systems 
to develop new resilience analyses – the ARCS-R method. This 
allows for potential critical vulnerabilities to be patched rapidly 
and provides an understanding of how emergent vulnerabilities 
impact reliability and resilience.  Using AI/ML and LLMs to 
continuously scan for new vulnerabilities and then 
automatically update reliability and resilience analysis shows 
promise as a method to keep critical systems working. 
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