
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/377657814

ARCS-R: Mission Critical Combined Reliability and Cybersecurity Systems

Engineering Analysis

Conference Paper · January 2024

DOI: 10.1109/RAMS51492.2024.10457626

CITATION

1
READS

229

5 authors, including:

Douglas Lee Van Bossuyt

Naval Postgraduate School

135 PUBLICATIONS 937 CITATIONS

SEE PROFILE

Nikolaos Papakonstantinou

VTT Technical Research Centre of Finland

81 PUBLICATIONS 1,045 CITATIONS

SEE PROFILE

Britta Hale

Naval Postgraduate School

21 PUBLICATIONS 167 CITATIONS

SEE PROFILE

Ryan Arlitt

Singapore University of Technology and Design

43 PUBLICATIONS 208 CITATIONS

SEE PROFILE

All content following this page was uploaded by Douglas Lee Van Bossuyt on 24 January 2024.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/377657814_ARCS-R_Mission_Critical_Combined_Reliability_and_Cybersecurity_Systems_Engineering_Analysis?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/377657814_ARCS-R_Mission_Critical_Combined_Reliability_and_Cybersecurity_Systems_Engineering_Analysis?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Douglas-Van-Bossuyt?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Douglas-Van-Bossuyt?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Naval_Postgraduate_School?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Douglas-Van-Bossuyt?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nikolaos-Papakonstantinou-2?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nikolaos-Papakonstantinou-2?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/VTT_Technical_Research_Centre_of_Finland?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Nikolaos-Papakonstantinou-2?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Britta-Hale?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Britta-Hale?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Naval_Postgraduate_School?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Britta-Hale?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ryan-Arlitt?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ryan-Arlitt?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Singapore-University-of-Technology-and-Design?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ryan-Arlitt?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Douglas-Van-Bossuyt?enrichId=rgreq-c808e918f961a81cad30331be95593a7-XXX&enrichSource=Y292ZXJQYWdlOzM3NzY1NzgxNDtBUzoxMTQzMTI4MTIxOTYwMTIzNUAxNzA2MTEyOTc0MDA5&el=1_x_10&_esc=publicationCoverPdf

ARCS-R: Mission Critical Combined Reliability and Cybersecurity
Systems Engineering Analysis

Douglas L. Van Bossuyt, PhD, Naval Postgraduate School

Nikolaos Papakonstantinou, PhD, VTT Technical Research Centre of Finland

Britta Hale, PhD, Naval Postgraduate School

Ryan Arlitt, PhD, Unaffiliated

Srinivasa Rao Palatheerdham, University of South Brittany, Lorient

Key Words: Large Language Model, Artificial Intelligence, Machine Learning, LLM, AI, ML, Cyber-Physical System, Failure
Rate, Resilience

SUMMARY & CONCLUSIONS

This paper explores how reliability analysis and cyber-security
analysis can be combined using Artificial Intelligence and
Machine Learning (AI/ML), and Large Language Models
(LLM) to produce a continuously updated resilience analysis.
This is achieved by modeling both the hardware and software
of the system, and employing LLMs and AI/ML to
continuously search for new software vulnerabilities and feed
that information into continuously updating resilience models.
A case study of a drone is presented that demonstrates the
promise of the proposed method. It is expected that using the
proposed method, named Assessment for Risk in
Cybersecurity and Safety - Resilience (ARCS-R), will reduce
failure rate of mission-critical cyber-physical systems by
reducing the likelihood of a potential initiating event causing a
prolonged degradation in system performance that impacts
system resilience.

1 INTRODUCTION

Modern cyber-physical mission-critical socio-technical
systems must operate in a rapidly evolving and worsening
dynamic threat environment. Further, such systems continue to
increase in complexity both from a hardware and a software
perspective. The introduction of AI/ML has added a new
element of risk that can cause systems to fail in new and
unexpected ways. Practitioners are challenged to evaluate the
combined failure probability of a system when considering both
reliability and security from a system resilience perspective.

Safety engineering has exploited decades worth of
reliability data on the behavior of materials, components,
devices and systems to establish libraries of failure probabilities
and mechanisms which were used to develop an extensive and
thorough set of failure modelling and safety assessment
methods and analyses. Of special interest to this paper is the
well-known “bathtub” curve which is a failure rate graph that
captures the typical lifecycle reliability phases of a system
starting from infant mortality when a system first comes online,

and then moves into the random failures phase during the main
part of the system’s lifecycle, and lastly moves into the wear-
out failures phase near the end of life of the system.
Unfortunately, in the security domain from a cyber perspective,
the threat environment is very volatile and thus the challenge of
risk modelling is more complex and dynamic. A significant part
of this challenge is the rapid collection and processing of
information as well as a good awareness of the system under
study.

While AI/ML technologies have had disruptive effects on
the cyber security of systems, recent developments of LLM -
based AI have shaken the traditional status quo with disruptive
extensions to cyber security threats, assessment, design, and
operation. This paper explores what role that LLM – based AI
can play in increasing the cadence of failure rate modeling of
critical systems. The research presented here focuses on the
challenge of modeling a reliability curve for the lifetime of the
system, including reliability and cybersecurity events. It has
been observed that when a new software intensive cyber-
physical system is deployed, there are many vulnerabilities
linked to bugs and design/implementation errors that can lead
to system failures. Then there is a more secure period where the
early issues are addressed (patched/fixed). Towards the end of
the system’s life there is again a more dangerous period when
system software/hardware components become
deprecated/obsolete, people who can maintain/fix the code have
left, the attack tools/methods have become better in bypassing
defenses, confidential info about the system’s security may
have been leaked, etc. This produces a similar picture to the
classic “bathtub curve” of system reliability. However, we have
observed that in recent years, even well-resourced cyber-
physical systems can have premature failure due to
cybersecurity issues due to the rapidly increasing velocity of
cyberattack development. Often, cybersecurity audits are
conducted on a semi-annual basis for industrial cyber-physical
systems; however, LLM-based AI may significantly increase
the needed frequency of analysis to understand the current

failure curve so that appropriate remediation steps can be taken
if needed.

The scientific contribution of this paper is an early study of
the information needed to extend the traditional reliability
bathtub curve to also include cybersecurity-related events. The
paper identifies which parameters may be relevant; how to
develop dynamic reliability curves based on the cyber threat
landscape; whether tools like LLM-based AI, possibly
combined with an expert panel of humans, can help to quickly
update the reliability curve; and how a high-level overview
model of a system can be used to represent the current and
forecasted resilience of a system on a per system function basis.

A case study of an internet-connected industrial inspection
drone with AI/ML components located at a remote, uncrewed
installation is presented. The drone is connected via the open
internet and a virtual private network to several resources. The
case study shows that the proposed methodology (ARCS-R)
can better forecast resilience of the system by combining
reliability and cybersecurity analyses.

2 LITERATURE REVIEW

This section provides a review of background information
and related research necessary to the research in this paper.

2.1 Resilience engineering

The engineering of resilient systems has seen a surge in
interest over the last several years, especially in the critical
infrastructure sectors [1]. Resilience is generally defined as the
ability of a system to recover from an event that causes partial
or total loss of system performance [2]. In the context of cyber-
physical mission-critical systems, resilience is yet another “-
ility” that must be balanced when conducting trade-off studies
in conceptual systems design [3]. In plain language, resilience
is the ability of a system to take a punch, recover, and resume
operations at an acceptable level. Generally, one or multiple
initiating events (sometimes called disturbances), either at the
same time or over a period of time, causes system performance
to degrade beyond nominal bounds. Then the system enters a
stabilization phase where degradation is stopped, and a new
baseline system performance is established – this baseline
performance is often well below acceptable performance for the
system. Next, the system enters a recovery phase where
performance increases until it reaches an acceptable level.
Finally, the system enters a post-recovery operation phase
where either the system is back to its pre-disturbance
performance level or stabilizes at an acceptable performance
level.

Resilience improvements are implemented in the pre-
disturbance phase before the initiating event has occurred.
Engineering analysis of potential initiating events that can
challenge a system’s resilience is conducted to determine
potential failure scenarios that must be addressed. Then
engineers develop mitigation strategies to either avoid the
initiating event(s), arrest the performance degradation before it
reaches an unacceptable level, or implement remediation
measures to more quickly recover the system to acceptable
levels of performance after the system is stabilized at the new

lower baseline [4].

2.2 Software security

Today, software is a key component across systems and the
interconnections between them, including control of
traditionally hardware components. With this dependency
comes an added risk: any vulnerability in the code could lead to
a vulnerability in the overall system, system failure, and safety
hazards for personnel. Software supports automation,
monitoring, and overall increased ease of use for systems – but
introduces a complexity that would not otherwise be present.
Moreover, with multiple code instances running on different
components and cross-feeding information, a further increase
in system complexity is introduced, and that complexity can
make detection of potential vulnerabilities difficult [5]. To
address this, multiple approaches and considerations have been
introduced and proposed to assist in the vetting of software and
continuous monitoring for identification of potential
vulnerabilities.

Software security starts at the time of development, which
offers an opportunity to build in a zero-trust approach early on
[6-8]. A controlled software development platform can control
who can develop and add to the code and view it [9-10],
minimizing the risk of unintended injects by malicious actors.
Version tracking can further support not only the developer in
their ability to roll back to older versions of the code or branch
off copies, but also source tracking on the software being
developed; maintainers can see when and who edited the code
and what changes they made, meaning that the possible issues
can be more easily determined if an insider threat is eventually
identified.

More recently, software tracking and source identification
has taken on the term Software Bill of Materials (SBOM) [11].
For a given program, an SBOM should identify who
implemented what code and when, what entities had either read
or write access throughout the stages of code development, and
what security tests were performed to assess the code, as well
as SBOMs for any externally developed code that is brought
into the development process. Thus, an SBOM may have
dependencies on other SBOMs, creating a nested set of
documentation for the final end product. Naturally, the
existence of an SBOM has little meaning if it is not used; thus,
the SBOM should not only be checked by an unbiased security
expert before the software is deployed, but it should also be
referenced throughout the lifetime of the software and issues
come to life (e.g., vulnerabilities are identified that could affect
externally developed code dependencies, insider threats who
may have had access, etc.).

Another security approach applied during the development
process is often termed DevSecOps [12], namely that the
developer works with the cybersecurity expert and end operator
during the code development. As in other fields, software
programming is an expertise of its own and it is a faulty
approach to assume that the same person has sufficient security
expertise for the needed use case. Furthermore, even if the
programming and security approach are sound, they may be
insufficiently tailored to the use case, which in itself can create

risk hazards. Thus, DevSecOps, as a concept, is born from a
motivation to ensure good code is developed in a way that is
also secure within the use case needs.

Ultimately, the above methods are intended to minimize
software risks before deployment; however, software security
does not stop once the coding is complete. Due to potential
human error, as well as unanticipated vulnerabilities in the code
dependencies or interdependencies once in the deployment
system (i.e., zero days), software security is a continuous
undertaking. Some companies employ red teams and white hat
hackers to try to identify vulnerabilities in the system(s).
Bounty hunting, e.g., via gray hat hackers, may also be
employed as a means to encourage skilled individuals to report
issues that they have found [13]. Finally, if malicious entities,
e.g., black hat hackers, identify and try to exploit vulnerabilities
in a system and are detected, a company may register the
vulnerability themselves. Frequently, companies are under an
ethical, business, and even legal obligation to disclose
vulnerabilities and patches for them regardless of how the issue
was discovered – this enables end-users to patch software and
other companies to harden their own systems from attacks.
Once such reporting method is through the Common
Vulnerabilities and Exposures (CVEs) program originally
launched by MITRE [14]. Vulnerabilities that are reported are
assigned a CVE number and logged with a public description
of the issue, implications, and how it was fixed (if a patch has
been deployed).

2.3 Software source code analysis tools

Software is an important part of any system and thereby
keeping the software secure is the ultimate goal of almost every
organization. Yet, we encounter security issues like data leaks,
credentials theft, and etc. Static Analysis Security Testing
(SAST) helps in preventing security issues while the software
is in its development phase. SAST analyses source code for
vulnerabilities also it helps developers who are from non-
security background to keep the source code secure and also
avoid insecure programming patterns [15].

Tools like Snyk help in such SAST analysis by providing
Scans in early development phase, to indicate the issue in the
source code also explain the issue found. They help in
identifying the issues without the need for executing the code.
It also helps in automating the scanning of source code files at
any point of Software Development Life Cycle (SDLC) [16].

SAST also checks for code issues & security
vulnerabilities, quality of documentation, consistency with
overall software design, compliance and best programming
practices, violation of rules that affect code execution, quality
aspect of software like system complexity or maintainability.

2.4 Vulnerability forecasting

Vulnerability forecasting is done based on the volume of
CVEs being produced within discrete time spans and it requires
only 8% of the value between now and a year from now. There
are multiple predictive algorithms to predict data for monthly,
quarterly, annually, and other periods. The main forecasting is
done with the data of publicly disclosed vulnerabilities. The

primary purpose of CVEs is to reduce the risk in vulnerability
management. The vulnerability of computers or networks can
be predictive based on the unpatched vulnerabilities. There can
also be many undiscovered/disclosed vulnerabilities in software
which can occur during software development lifecycle or can
be intentional too to make the quality team find but eventually
they were unidentified. The other type of vulnerabilities can
occur due to vendor specific product/software.

In [17] the authors strictly took the data from 2016 and
training data up to the end of 2015. The 2016 data employs root
mean squared percentage error (RMSPE) for validation and
includes larger categories, including all vulnerabilities, browser
CVEs, operating system CVEs, and video codec CVEs. metric
achieving a median of 15% RMSPE for global vulnerability
predictions over 24 months. This approach predicts cumulative
CVEs of all time which makes the percentage of error metrics
not consistent over time.

To predict the number of CVEs as a whole as well as sub-
types of CVEs across different time spans (1 month, 3 months,
half yearly, and annually) different models are required.
Predictive model can be a good method but limited to lab data
set only. Performing standard time series and forecasting
analysis using predictive models which involves both statistical
and machine learning models. To exploit the metadata from the
CVE database minimum variance unbiased estimator (MVUE)
and Little's Law exit rate [18] are used.

In the case of Adobe Acrobat Reader, the Mean Absolute
Error for a period of 12 months was 163 with combined model.
For Microsoft Windows 10 it was 156. Similarly for Linux
Kernal it was 191.

Thus, the choice of predictor is validation set-based even
for the combined model.

3 METHODOLOGY

The backbone of the proposed ARCS-R methodology is the
combination of safety and security towards an overall resilience
risk assessment as shown in Fig. 1. While the combined system
failure probability due to component failures is a function of
time (shown as phases of the classic “bathtub” failure rate
graphic [19]), in the cyber world the conditions are much more

Figure 1: The Combination of Reliability and Cyber-Security
into Resilience

dynamic. The threat landscape, the software configuration, and
new cyber threat intelligence inputs can substantially affect the
overall cyber risk assessment of the system as shown in Fig. 2.
Apart from the known vulnerabilities, unknown ones can be
expected to exist, taking into consideration the lifecycle phase
of the software used (early versions vs mature releases vs near
end-of-life usage), its complexity, its popularity, and its
attractiveness as a target, as shown in Fig. 3.

The proposed ARCS-R methodology shown in Fig. 4
contains two parallel tracks, one related to safety/reliability and
one for cyber security. Step 1.1 is part of the traditional safety
engineering work and more specifically the development of a
model (topology, behavior and internal/external interactions) to
be used for calculating the reliability of the system. Step 1.2
calls for a similar activity, but this time focusing on the cyber
aspect of the system. Step 1.3 provides a source code version of
1.1. and 1.2, namely moving the reliability assessment a further
layer down into the code itself. In Step 2.1 the practitioner
performs a reliability assessment given the system model and
information about the components to estimate the failure rate
graph. In the cybersecurity side, the software is tested in Step
2.2.1 using white box, black box or grey box techniques [20] to
identify as many as possible existing vulnerabilities. After the
security testing process has been performed over a large enough
period of time, a vulnerability forecasting method like the
Vuln4Cast [17] can be used in Step 2.2.2 to provide a statistical
prediction of the vulnerabilities to be discovered in the future.

The LLM code generation foundation model can be trained
on the language(s) of our software components, and can be fine
tuned on those software components themselves. The prompt to
the LLM can include the particular piece of code to be analyzed
along with a general request to search for and patch
vulnerabilities. Vulnerability databases are included via
Retrieval Augmented Generation (RAG). A second adversarial
LLM can be used to write and/or run tests to demonstrate the

performance of the new code – that it still works as intended
and that the vulnerability no longer exists. It then falls to the
practitioner to assess the outcomes and provide a circuit breaker
against automating the introduction of new defects. In the

context of the ARCS-R methodology, this approach can be
performed over the entire software bill of materials and used to
create reliability and security statistics over the full system.

Step 2.2.1 is interesting to describe further. In white box
software security testing, a tool like the Shift Left Scan [21] can
perform a static application security testing by analyzing the
source code for potential vulnerabilities. The same tool supports
black box testing where the goal is to discover vulnerabilities in
the functionalities of the software while it is running. In
addition, a dependency-based tool like SNYK [22] can discover
vulnerabilities by checking the library dependencies of a
software project against Common Vulnerabilities and
Exposures (CVEs) databases (like VulDB [23] or NIST/NVD
[24]) and then compile a report summarizing the results, often
with a priority label based on a scoring method like the
Common Vulnerability Scoring System (CVSS) [25].

In step 2.2.2 a tool like Vuln4Cast can be used to forecast
vulnerabilities monthly, quarterly, or yearly based on the
vulnerabilities discovered so far. This method is still in active
development and its predictive algorithms have been used for
software products like operating systems (Windows, MacOSX,
Linux kernel) as well as smaller products like Adobe Acrobat
[17]. Its applicability is constrained mainly on the availability
of a large enough data set of discovered CVEs over time.

The results of Step 2.1 and 2.2.2 are combined in Step 3 to
provide an overall resilience forecast.

4 CASE STUDY

A case study of an internet-connected industrial inspection
drone with AI/ML components is now presented. The drone is
connected via the open internet back to the manufacturer for
usage data, maintenance and diagnostic purposes, and asset
management. In addition, it is connected via a company virtual

Figure 3: Cybersecurity – unknown threats

Figure 4: Methodology

Figure 2: Reliability/Cyber-security as a function of time.

private network to a remote control facility where the drone’s
data is processed and analyzed. The drone conducts periodic
assessment and site surveys of a remote industrial facility that
typically operates without a human presence such as petroleum
production fields, flood control infrastructure, or similar. It
follows a fixed patrol route that it can optionally deviate from
when an anomaly warranting further inspection is detected. A
traditional bathtub curve reliability analysis indicates the drone
can operate at the remote industrial facility for several years
with only minimal maintenance. However, the increased
cadence of cyberattacks has led to the potential of cybersecurity
related vulnerabilities that could impact the AI/ML components
aboard the drone. This could cause the drone to malfunction
and fail which could lead to both the loss of the drone as an
asset and also damage to the industrial facility. The company
currently does a security audit every six months and updates the
AI/ML and cyber components on an as-needed basis based on
the security audit. However, the company lacks resources for
in-depth cybersecurity assessment related to the drone, as it is a
minor part of a complex system within the management scope.
Thus, an LLM-based AI is then introduced to continuously scan
the internet for information related to the cyber components
aboard the drone as well as any specific AI-based threats that
should be considered at the next audit. The LLM-based AI
further can analyze how CVEs impact system functionality, and
produces a new reliability curve to help communicate
information to the team tasked with keeping the drone secure
and operational. This allows the team to more rapidly address
cybersecurity threats and delay addressing threats that will not
cause an immediate threat to the drone system. The case study
next picks up at Step 1 of the proposed ARCS-R methodology.

Step 1.1: Reliability System Models
System reliability models are developed of the drone. A

reliability block diagram is developed, individual component
reliability data is either identified from existing data sources or
developed through accelerated lifecycle testing. Dependencies
and interfaces between the system hardware (e.g.: motors,
batteries, controllers, etc.) and the system software are
identified.

Step 1.2: System Security Models
The system interaction, including communication links,

user interfaces, device internal software module interactions, is
modeled to identify device internal dependencies and to provide
a foundational design vulnerability analysis. While code review
in later steps will be used to identify issues in the code itself,
this step ensures that the type of code is appropriate to the
system design and threat model.

Step 1.3: Software System Models
The source code for the drone is collected and analyzed to

develop a software bill of materials. This is a common
cybersecurity requirement and audit method found in industry
and government guidance. The software system models identify
package dependencies as well as any published vulnerabilities
in those dependencies. This step does not include any new
software analysis, but identifies known vulnerabilities. The
package dependencies can be used in the future to scan for new
vulnerabilities as they are identified in the software packages.

Step 2.1: Reliability Engineering
The reliability models indicate that the drone’s reliability

follows the classic “bathtub curve” where, after an initial
“infant mortality” phase, the drone is expected to have a long
service life with low random failure. At the end of the service
life, the drone enters the “wear-out” phase of reliability where
components increasingly fail as the reach end of life.

Step 2.2.1: Software Security Testing
 Next software security testing is performed. This goes

hand-in-hand with the AI/ML model development, any new
software development, and new software analysis tests on the
dependencies identified in Step 1.2. This may include use of
fuzz testing tools and an AI/ML vulnerability analysis.

Step 2.2.2: Vulnerability Forecasting
Vulnerability forecasting is now conducted. In this case

study, ShiftLeft code analysis is used. However, many different
vulnerability techniques are available in the literature.

ShiftLeft code analysis does various sorts of analysis using
a single code representation known as a "code property graph."
Various approaches like Data Flow analysis, Control Flow
analysis, Taint analysis, Lexical analysis, Configuration
analysis, and Buffer overflow analysis, are typically used to do
static analysis. On the other hand, ShiftLeft starts by
constructing the code property graph (CPG), a single data
structure. Through this single data structure (code property
graph), it then does all of the aforementioned analysis on the
complete code base (third-party libraries, open-source code),
achieving enormous time/memory savings and thus saving time
on code analysis. It's possible that a Shift Left testing strategy
can't always give the best performance and functionality in a
real-world setting. A Shift Right testing technique may be
helpful in these circumstances.

The benefits of ShiftLeft scan can be Faster delivery,
Improved security posture, Reduced costs, improving security
integration and pace, Enabling trust in the overall software.
Additionally, ShiftLeft scan reduces cost involved in fixing
issues lately in CI/CD pipelines.

The set of open-source projects scanned using Snyk for
dependency-based analysis shows us that the vulnerabilities for
open-source code or software code are generally dependent on
dependencies too. The more the dependencies which have
unsolved vulnerabilities, the more insecure the program or
source code becomes thereby affecting the system in which the
software present or works for. In turn this can affect the entire
network or production systems which when used for Live
systems without patching vulnerabilities.

Step 3: Resilience Forecasting
Finally, the results of the reliability engineering and

vulnerability forecasting steps are combined. Fig. 5 shows how
the classic reliability “bathtub” curve can change with
vulnerability forecasting, and further shows how the reliability
curve can change over time as the LLM continuously scans for
new software vulnerabilities. This can be fed into a resilience
calculation to develop updated resilience information as shown
in Fig 6.

5 CONCLUSION AND DISCUSSION

This paper has proposed a new way of automatically
assessing reliability and vulnerability of cyber-physical systems
to develop new resilience analyses – the ARCS-R method. This
allows for potential critical vulnerabilities to be patched rapidly
and provides an understanding of how emergent vulnerabilities
impact reliability and resilience. Using AI/ML and LLMs to
continuously scan for new vulnerabilities and then
automatically update reliability and resilience analysis shows
promise as a method to keep critical systems working.

ACKNOWLEDGEMENTS

The views presented are those of the authors and do not
necessarily represent the views of the US Department of
Defense, US Navy, VTT Technical Research Centre of Finland,
or other organizations. This work was partially supported by the
AI-NET-ANTILLAS project (CELTIC-NEXT, C2019/3-3),
funded by Business Finland. Approved for Public Release;
distribution is unlimited.

BIOGRAPHIES

Douglas L. Van Bossuyt, PhD
Department of Systems Engineering
Naval Postgraduate School
e-mail: douglas.vanbossuyt@nps.edu

Douglas L. Van Bossuyt is an associate professor of systems
engineering at the Naval Postgraduate School in Monterey,

California. He earned his doctorate in mechanical engineering
at Oregon State University in 2012. His research focuses on
the nexus of risk and failure analysis, RAMS, and systems
design methods. He earned his honors bachelor’s of science in
mechanical engineering and honors bachelor’s of arts in
international studies (2007), and his master’s of science in
mechanical engineering (2009) at Oregon State University.

Nikolaos Papakonstantinou, D.Sc. (Tech.), Docent
VTT Technical Research Centre of Finland
e-mail: nikolaos.papakonstantinou@vtt.fi

Nikolaos Papakonstantinou is an electrical and computer
engineer (Univ, of Patras/Greece, 2008), has a doctorate
degree in information technology in automation from Aalto
University, Finland (2012) and he is a docent in the field of
information technologies in industrial applications (2020). He
is leading the Applied cybersecurity team at the VTT
Technical Research Centre of Finland. VTT is a large non-
profit research organization with both commercial and public
research activities. The interests of the team include security
training, device testing, security design/architectures, platform
security as well as holistic security assessment of industrial
systems and other critical infrastructure. Papakonstantinou's
personal interests focus on early resilience (safety/security)
engineering for complex sociotechnical systems.

Britta Hale, PhD
Department of Computer Science
Naval Postgraduate School
e-mail: britta.hale@nps.edu

Britta Hale is a cryptographer and Assistant Profession in the
Computer Science Department at the Naval Postgraduate
School in Monterey, California. She holds a PhD from the
Norwegian University of Science and Technology and a
Master’s of Science from Royal Holloway University of
London. Dr. Hale’s research areas include cryptographic
protocol design and analysis, applications to uncrewed
systems and counter-uncrewed systems, and security for other
emerging environments and technologies.

Ryan Arlitt, PhD
Unaffiliated
e-mail: arlitt.ryan@gmail.com

Ryan Arlitt is an unaffiliated researcher. Previously he was an
assistant professor of mechanical engineering in the
Department of Civil and Mechanical Engineering at the
Technical University of Denmark. He holds a PhD in
mechanical engineering (Oregon State University), a MS in
Systems Engineering (Missouri University of Science and
Technology), and a BS in Interdisciplinary Engineering
(Missouri University of Science and Technology). His
research focus is on design methods in the fuzzy front end, at
the interface of human expertise and computational tools.

Figure 6: Resilience curve of system without vulnerabilities assessed
(blue) and with vulnerabilities assessed (orange). Numbers indicate
specific regions of resilience (1: initiating event, 2: start of new
baseline, 3: start of recovery, 4: recovered).

Srinivasa Rao Palatheerdham
Masters in Cyber Security
University of South Brittany, Lorient
e-mail: palatheerdham.e2205110@etud.univ-ubs.fr

After finishing his bachelors in Computer Science and
Engineering from JNTU Karimnagar, India, he worked for 3
MNCs as a Middleware administrator, Lead Product Support
engineer and Application administrator in India for 9 years.
His bachelors thesis involves Verification through Iris
recognition. His thirst for Cyber Security made him apply for
different programs in Europe and thereby getting into
prestigious Erasmus Mundus program from University of
South Brittany, Lorient during 2022. His interest in the field of
Cyber Security is mainly into threat information landscape and
GRC (Governance, Risk, and Compliance) Risk management.

REFERENCES

1. R.E. Giachetti, D.L. Van Bossuyt, W.W. Anderson, &
G. Oriti, “Resilience and cost trade space for microgrids on
islands,” IEEE Systems Journal, 16(3), pp 3939-3949,
Sept. 2021. Available:
https://doi.org/10.1109/JSYST.2021.3103831
2. E. Anuat, D.L. Van Bossuyt, & A. Pollman, “Energy
resilience impact of supply chain network disruption to
military microgrids,” Infrastructures, 7(1), 4. Dec. 2021.
Available: https://doi.org/10.3390/infrastructures7010004
3. D. L. Van Bossuyt, I.Y. Tumer, & S.D. Wall, “A case
for trading risk in complex conceptual design trade
studies,” Research in Engineering Design, 24, pp. 259-275.
July 2013. Available: https://doi.org/10.1007/s00163-012-
0142-0
4. N. Papakonstantinou, B. Hale, J. Linnosmaa, J.
Salonen, & D.L. Van Bossuyt, “Model driven engineering
for resilience of systems with black box and ai-based
components.” In 2022 Annual Reliability and
Maintainability Symposium (RAMS). pp. 1-7. IEEE. Jan.
2022. Available:
https://doi.org/10.1109/RAMS51457.2022.9893930
5. McCabe Software, Inc. “More Complex = Less
Secure: Miss a Test Path and You Could Get Hacked.”
2021. Available:
http://www.mccabe.com/pdf/More%20Complex%20Equa
ls%20Less%20Secure-McCabe.pdf
6. N. Papakonstantinou, D.L. Van Bossuyt, J.
Linnosmaa, B. Hale, & B. O’Halloran, “A Zero Trust
Hybrid Security and Safety Risk Analysis Method,”
Journal of Computing and Information Science in
Engineering, 21(5): 050907, Oct. 2021. Available:
https://doi.org/10.1115/1.4050685
7. B. Hale, D. L. Van Bossuyt, N. Papakonstantinou, &
B. O'Halloran, “A Zero-Trust Methodology for Security of
Complex Systems With Machine Learning Components,”
Proceedings of the ASME 2021 International Design
Engineering Technical Conferences and Computers and
Information in Engineering Conference. Volume 2: 41st
Computers and Information in Engineering Conference

(CIE). Virtual, Online. August 17–19, 2021. Available:
https://doi.org/10.1115/DETC2021-70442
8. S. Rose, O. Borchert, S. Mitchell, S. Connelly, "Zero
trust architecture." NIST. Gaithersburg, MD. Special
Publication 800-207. 2020. Available:
https://doi.org/10.6028/NIST.SP.800-207
9. A. W. Brown, M. Delbaere, P. Eeles, S. Johnston and
R. Weaver, "Realizing service-oriented solutions with the
IBM Rational Software Development Platform," IBM
Systems Journal, vol. 44, no. 4, pp. 727-752, 2005, doi:
10.1147/sj.444.0727.
10. A. Stuckenholz, "Component evolution and
versioning state of the art." ACM SIGSOFT Software
Engineering Notes Vol. 30, no. 1. 2005. Available:
https://doi.org/10.1145/1039174.1039197
11. N. Zahan, E. Lin, M. Tamanna, W. Enck, & L.
Williams. "Software Bills of Materials Are Required. Are
We There Yet?" IEEE Security & Privacy 21, no. 2 pp.
82—88. 2023. Available:
https://doi.org/10.1109/MSEC.2023.3237100
12. M.A. Akbar, K. Smolander, S. Mahmood, and A.
Alsanad. "Toward successful DevSecOps in software
development organizations: A decision-making
framework." Information and Software Technology 147:
106894, 2022. Available:
https://doi.org/10.1016/j.infsof.2022.106894
13. M. Ashong, "Bug the Bounty Hunter:
Recommendations to Congress to Best Effectuate the
Purpose of the Secure Technology Act." Public Contract
Law Journal, 49:173, 2019.
14. CVE. “CVE Program Mission: Identify, define, and
catalog publicly disclosed cybersecurity vulnerabilities.”
Accessed June 2023. Available: https://www.cve.org/
15. B. Chess, & G. McGraw, “Static analysis for security,”
IEEE Security & Privacy, 2(6), 76-79. 2004.
16. Y.B. Leau, W.K. Loo, W.Y. Tham, & S.F. Tan,
“Software development life cycle AGILE vs traditional
approaches,” Proceedings of International Conference on
Information and Network Technology, Vol. 37, No. 1, pp.
162-167. 2012.

17. É. Leverett, M. Rhode, & A. Wedgbury, “Vulnerability
Forecasting: Theory and practice,” Digital Threats:
Research and Practice, 3(4), 1-27. 2022. Available:
https://doi.org/10.1145/3492328

18. J.D. Little, & S.C. Graves, “Little's law,” in Building
Intuition. International Series in Operations Research &
Management Science D. Chhajed, T.J. Lowe, vol. 115, pp.
81-100. 2008. Available: https://doi.org/10.1007/978-0-
387-73699-0_5

19. G.A. Klutke, P.C. Kiessler, & M.A. Wortman, “A critical
look at the bathtub curve,” IEEE Transactions on
reliability, 52(1), 125-129. Mar. 2003. Available:
https://doi.org/10.1109/TR.2002.804492

20. O.B. Tauqeer, S. Jan, A.O. Khadidos, A.O. Khadidos, F.Q.
Khan, & S. Khattak, “Analysis of security testing
techniques,” Intelligent Automation & Soft Computing,
29(1), 291-306. 2021. Available:

https://doi.org/10.32604/iasc.2021.017260
21. G. Alvarenga, “Shift Left Security Explained,”

CrowdStrike, 11 Jan. 2022. Available:
https://www.crowdstrike.com/cybersecurity-101/shift-
left-security/

22. Synk Limited, “Developer Security, Develop Fast,”
Accessed: 12 July 2023. Available: https://snyk.io/

23. Pyxpy inc. “VulDB,” Accessed: 10 July 2023. Available:
https://vuldb.com/

24. NIST, “National Vulnerability Database,” Accessed: 8 July
2023, Available: https://nvd.nist.gov/

25. Forum of Incident Response and Security Teams, Inc.,
“Common Vulnerability Scoring System SIG,” Accessed:
14 July 2023. Available: https://www.first.org/cvss/

View publication stats

https://www.researchgate.net/publication/377657814

