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Abstract 
 

In this paper we present a case study that shows how machine learning – through the use of a 
support vector machine classifier – can be used to accurately detect cavitation in a hydroturbine. 
The cavitation detection process presented in this paper relies on proximity probes instead of 
more common cavitation detection sensors such as accelerometers and acoustic emission sensors. 
The data used to calibrate the support vector machine comes from a 100 second ramp-down of the 
hydroturbine, which allows it to be easily re-calibrated with minimal interruption to normal 
operation of the hydroturbine. The process of the using a machine learning algorithm, proximity 
probes, and ramp-down data is novel for the hydro industry and represents a new and practical 
path forward for long term cavitation data collection – the first step towards estimating cavitation 
erosion rates. 

 

Introduction 

Despite advancements in hydroturbine designs, cavitation resistant materials, and computer-based 
fluid modeling, cavitation remains one of the primary causes of turbine failure [1]–[3] and is 
responsible for large annual monetary losses both in terms of repair costs and lost generation [4]. 
Restricting a hydroturbines operating range outside of known cavitation zones can help mitigate 
cavitation damage; however, cavitation damage can still occur due to seasonal variations to water 
levels, flooding or drought, and changes in the way hydroturbines are operated. In addition, 
overly conservative running restrictions can lead to running hydroturbines outside of their optimal 
efficiency ranges and restrict operational flexibility. 

Installing a real-time cavitation detection system is one choice for a hydroturbine operator to help 
understand when cavitation is occurring. There are many choices for sensor-based cavitation 
detection [5]–[11]; however, no single method has been shown to be both economical and feasible 
for every style of hydroturbine and type of cavitation. The ongoing problems caused by cavitation 
points to the need to develop better, more accessible methods for sensor-based cavitation 
detection. 
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Beyond cavitation detection, there is also a need to estimate the amount of damage caused by 
cavitation at a given intensity level. Being able to estimate cavitation damage – also called 
erosion rate estimation – can give a hydroturbine operator the following advantages: 

1. The ability to better plan for and control maintenance and inspection schedules. 
2. The data needed to calculate the remaining useful life for cavitation-affected parts of the 

turbine. 
3. The knowledge needed to control hydroturbines based on erosion rates and potential repair 

costs. 

An additional problem with many cavitation detection methods is that determining the presence of 
cavitation does not give enough information to estimate the amount of cavitation damage that 
may be occurring. It has been shown in a laboratory environment [12] that cavitation intensity, as 
measured by acoustic emission sensors or accelerometers, can be related to erosion caused by 
cavitation. This means a cavitation detection method must also be able to track intensity over a 
long period to be effective for estimating erosion rates. Similar efforts have been attempted on 
real hydroturbines at hydroelectric plants; however, long term cavitation detection, intensity 
tracking, and damage inspection is much more challenging in an industrial environment and, to 
our knowledge, erosion rate information has yet to be published [3], [13], [14]. 

In this paper we address some of the difficulties in both cavitation detection and erosion rate 
estimation by presenting a case study where data collected from proximity probes, combined with 
a machine learning algorithm called a support vector machine (SVM), are used to identify 
cavitation in an 85 MW Francis style Hydroturbine. The use of proximity probes and support 
vector machines represent a new direction in cavitation detection for the following three reasons: 

1. Proximity probes are typically not used for cavitation detection. Cavitation is seen as a 
high frequency event and proximity probes (also called non-contacting eddy current 
displacement sensors) are sensitive to lower frequency ranges and usually used for 
diagnosing lower frequency faults associated with balance or shaft alignment. The use of 
proximity probe data and carefully selected cavitation detection features allows lower 
frequency, less expensive, data collection equipment to be used and reduces problems 
with long term data storage. In addition, proximity probes are more likely to be already 
installed on older hydroturbines which expands the likelihood of the use of this approach 
by further reducing the cost of installing new instrumentation.  

2. Ramp-down data (data collected while the hydroturbine goes from fully open to fully 
closed wicket gates) is used to both identify when cavitation is occurring, and train (or 
calibrate) the support vector machine. Collecting ramp-down data is relatively quick and 
unobtrusive, which means the SVM can be re-calibrated regularly. Using ramp-down data 
for re-calibration is an advantage for long term cavitation detection as it allows the SVM 
to be updated when operating conditions change due to seasonal variation, when repairs 
are made to the turbine, or when there is from drift in the data acquisition equipment. The 
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ability to quickly re-train the SVM keeps cavitation thresholds up to date and reduces false 
positive and false negative identification of cavitation events. 

3. To our knowledge, the use of machine learning algorithms for cavitation detection in 
hydroturbines has never been published. Many powerful and useful machine learning 
algorithms and methodologies have been developed over the last two decades in the 
research community. Industrial applications for many of these methods have yet to be 
fully explored. By using support vector machines for cavitation detection, we open the 
door to a large and constantly evolving body of knowledge that can be used to improve 
how hydroturbines are operated and maintained. 
 

Case Study 

We present here a case study using real data collected during a cavitation survey conducted by the 
United States Bureau of Reclamation on a Francis turbine at a hydro power plant located in the 
western United States. The data was collected from four proximity probes - two mounted 90 
degrees apart located near the lower turbine bearing (PP1 and PP2) and two mounted 90 degrees 
apart located near the upper turbine bearing (PP3 and PP4). All proximity probe signals were 
collected at a sample rate of 10,000 Hz. The following two data sets were used from the cavitation 
survey: 1) data collected during a 100 second-long duration linear ramp-down of the hydroturbine 
starting at 85 MW and ending at 0 MW of power output, and 2) data collected during steady-state 
operation at 17 different power output conditions ranging from 5MW to 85 MW in 5 MW 
increments. 

The case study presented in this paper has two objectives: First, we demonstrate a procedure for 
selecting a cavitation detection feature and training a support vector machine using data that can 
be obtained quickly and with minimal disruption to the operation of a hydroturbine. Second, we 
test the feasibility of using support vector machines and proximity probe data for cavitation 
detection and simultaneously compare several different cavitation detection features in the 
process. 

This case study follows a three step procedure to obtain a realistic estimate for how well a support 
vector machine would work for long term cavitation identification: 

1. Feature Selection – A feature is a set of relevant variables used by a classifier algorithm to 
make predictions.  In this study, feature selection was the process of determining the 
sensor, sensor location, and cavitation sensitivity parameter1 to use for cavitation 
detection. The first variables of the feature – the sensor and sensor location – have been 
simplified in this case study by the choice to use proximity probes as the sensors and the 
choice to compare the effectiveness of several sensor location combinations. Determining 

                                                 
1 A cavitation sensitivity parameter is an indicator sensitive to the onset and development of cavitation as defined in 
[22] 
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the final remaining feature variable – the cavitation sensitivity parameter – was the focus 
of the feature selection step in this case study. 

2. Classifier Training – Support vector machines (as well as other supervised learning 
algorithms) require training with labeled data before they can be used to make predictions 
from new unlabeled data. For cavitation monitoring on a hydroturbine, labeled data is 
feature data where each data point is known to have been collected when either cavitation 
is occurring (labeled “1”) or  when cavitation is not occurring (labeled “-1”). Once a SVM 
is trained to recognize cavitation, it can then be used to predict if cavitation is occurring 
based on new, unlabeled, data points. Classifier training and testing was performed using 
Matlab Software (R2015a) with the Statistics and Machine Learning Toolbox. 

3. Classifier Testing – Once the SVM has been trained, its predication accuracy can be tested 
using a separate data set with the labels hidden from the SVM. Test data collected 
separately from the ramp-down data, but from the same hydroturbine, was fed into the 
SVM and the algorithm produced a predicted classification for each feature data point. 
The SVM’s prediction accuracy was calculated as a percentage of correct classifications 
using Equation 1.  

%	correct ൌ
number	of	correct classifications
number	of	feature test points

ൈ 100 (1) 

 

Feature Selection 

The first step toward determining a cavitation sensitivity parameter is to analyze the frequency 
content of the ramp-down data to look for vibration frequency ranges sensitive to cavitation. To 
analyze the frequency content, the ramp-down data collected from the proximity probes – 100 
seconds of data – is divided into 1 second intervals. The hydroturbine power as a function of time 
is shown in Figure 1. The Fast Fourier Transform is then applied to each interval resulting in 100 
frequency spectra. The variance of each frequency bin across all 100 spectra is then found using 
Equation 2, where M is the total number of spectra, xm is the frequency amplitude, and ̂ߤ௫ is the 
mean value of the amplitude over all the spectra.  

ሻݔሺݎܽݒ ൌ
∑ ௠ݔ| െ ௫|૛ߤ̂
ࡹ
૚

M െ 1
 (2) 

The result of the calculation is a single variance spectrum (Figure 2) showing the variance in 
amplitude, or normalized amplitude2, of frequencies from 1 - 100 Hz over the whole ramp-down 

                                                 
2 We refer to this as a normalized amplitude since the sample variance from Equation 2 is normalized by the total 
number of spectra minus one and it compares a relative difference in amplitude of individual frequencies over the 
whole ramp-down. 
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sequence. Analysis of the variance spectrum indicates two frequency ranges of interest: the first 
frequency range is 0 - 20 Hz and the second frequency range is 60 – 75 Hz. The normalized 
amplitude of frequencies above 100 Hz is essentially zero. 

To understand how Frequency Range 1and 2 relate to cavitation, the root mean square (RMS) 
amplitude for each frequency range is calculated for each 1 second interval of the ramp-down data 
using Equation 3, where x is the amplitude of each vibration sample in the 1 second interval and N 
is the total number of vibration samples in each interval. 

ሻݔሺݏ݉ݎ ൌ ඩ
1
ܰ
෍|ݔ௡|૛
ࡺ

૚

 (3) 

Figure 3 shows the results of the RMS ramp-down calculations for Frequency Range 1 and 2 
versus hydroturbine power output. The amplitude of Frequency Range 1 peaks above 80 MW and 
around 30 MW while the amplitude of Frequency Range 2 peaks near 60 MW. The difference in 
amplitude between the two frequency ranges shows they are tracking different phenomenon 
within the hydroturbine during the ramp-down. Frequency Range is primarily made up of the 
hydroturbine running speed vibration and its harmonics while Frequency Range 2 includes both 
the blade passing and guide vane passing frequencies. Based on analysis performed outside of the 
scope of this paper, Frequency Range 1 is tracking vibration caused by draft tube swirl while 
Frequency Range 2 is tracking erosive cavitation on the runner blades3. 

                                                 
3 Cavitation analysis and runner inspection were performed by the operators of the hydroturbine and the United States 
Bureau of Reclamation. The techniques used to perform this analysis were similar to those discussed in [6], and [7]. 

Figure 1. Hydroturbine power output during ramp-
down 

Figure 2. Frequency spectrum of the variance 
through ramp-down 
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RMS amplitude of vibration within Frequency Range 1 and Frequency Range 2 are the first two 
cavitation sensitivity parameters chosen for detecting cavitation for this study. RMS amplitude 
within a frequency range is prevalent as a simple form of cavitation detection [7], [9], [15], [16] 
and is commonly used in general condition monitoring as well [17], [18]. 

The third choice for a cavitation sensitivity parameter is Kurtosis of vibration in frequency range 
1. Kurtosis is chosen because it is a way to measure the impulsiveness of a vibration signal [19] 
and though it is not commonly used for cavitation detection, it is seen in other condition 
monitoring applications such as bearing and gear fault detection [20], [21]. Kurtosis, as defined in 
Equation 4, is calculated using the mean, ̂ߤ௫ , and the standard deviation, ߪ௫ , of the N values in 
each 1 second segment of the ramp-down data.  

kurtሺxሻ ൌ

1
ܰ∑ ሾݔ௡ െ ௫ሿସேߤ̂

ଵ

௫ସߪ
 (4) 

With the cavitation sensitivity parameters selected, the complete features chosen to be tested for 
cavitation detection using a support vector machine are shown in Table 1.  

Feature Name Sensor Type Sensor Location(s) 
Cavitation Sensitivity 

Parameter 

F_all Proximity Probe All 4 
RMS Range 1 
RMS Range 2 

Kurtosis Range 1 

F_all_12 Proximity Probe All 4 
RMS Range 1 
RMS Range 2 

F_all_23 Proximity Probe All 4 
RMS Range 2 

Kurtosis Range 1 

F_all_1 Proximity Probe All 4 RMS Range 1 

Figure 3. RMS of proximity probe 1 on the lower 
bearing during ramp-down 

Figure 4. RMS and kurtosis of proximity probe 2 
on the lower bearing during ramp-down
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F_all_2 Proximity Probe All 4 RMS Range 2 

F_all_3 Proximity Probe All 4 Kurtosis Range 1 

F_1_all Proximity Probe PP1 All 3 

F_2_all Proximity Probe PP2 All 3 

F_3_all Proximity Probe PP3 All 3 

F_4_all Proximity Probe PP4 All 3 

F_12_all Proximity Probe PP1, PP2 All 3 

F_13_all Proximity Probe PP1, PP3 All 3 

F_14_all Proximity Probe PP1, PP4 All 3 

F_23_all Proximity Probe PP2, PP3 All 3 

F_24_all Proximity Probe PP2, PP4 All 3 

F_34_all Proximity Probe PP3, PP4 All 3 

Table 1. Cavitation detection features selected to test support vector machines for their ability to classify 
cavitation. 

 

Classifier Training 

The Support Vector Machine algorithm used for cavitation detection is trained using the features 
from Table 1 generated from the hydroturbine ramp-down data. The advantage of using ramp-
down data for training the SVM is that it can be collected relatively quickly and with little effort, 
which means the SVM can be easily re-trained. Re-training the SVM regularly prevents the 
algorithm from becoming ineffective due to repairs made to the turbine, changes in the machine 
operating conditions, environmental effects, or drift in the data acquisition equipment. The 
disadvantage of training the SVM with ramp-down data is that the analyst must know or estimate 
when the hydroturbine is experiencing cavitation so that the data can be properly labeled. 

For this case study, the data is labeled through a combination of knowledge gained from previous 
cavitation analysis on the hydroturbine and analysis of the coast down plots in Figures 3 and 4. 
Feature data collected between the power output range of 81 to 40 MW is labeled as class 1 
(cavitation) data and the rest of the feature data is labeled as class -1 (no cavitation). It should be 
noted that based on the ramp-down data and previous analysis performed on the hydroturbine, the 
data could have been given additional labels that would have trained the SVM to also recognize 
high vibration caused by draft tube swirl. An SVM that recognizes more than two classes is called 
a multiclass SVM. 

Classifier Testing 

The ability of the trained SVM to recognize cavitation conditions in the hydroturbine is tested 
using additional proximity probe data collected during the cavitation survey. We believe that 
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training with ramp-down data and testing with steady state running data is a realistic test of the 
SVM’s prediction capabilities under actual running conditions. 

The test data was taken during steady-state running conditions at 17 different power output levels. 
Each power level had 32 feature data points for a total of 544 test points. The class label for each 
data point was determined through previous analysis of accelerometer and acoustic emission data 
taken during the cavitation survey. Results of the classifier testing for each feature are shown in 
Table 2. 

Feature Name %  of correct classifications 

F_34_all 94.8 

F_4_all 94.7 

F_24_all 94.7 

F_all_12 93.9 

F_14_all 93.9 

F_12_all 92.6 

F_all_2 92.5 

F_all 91.7 

F_all_23 91.4 

F_1_all 90.6 

F_2_all 90.6 

F_13_all 85.7 

F_23_all 83.6 

F_3_all 80 

F_all_3 64.7 

F_all_1 55.7 

Table 2. Support vector machine cavitation classification accuracy by cavitation detection feature (sorted 
by ranking). 

 

Discussion 

Case Study Results 

As can be seen from feature F_all_2, frequency range 2 is the best single cavitation sensitivity 
parameter for predicting cavitation. The use of multiple cavitation sensitivity parameters with the 
correct combination of sensors ultimately produces the best results as can be seen with the top 5 
ranked features. The additional advantage to including these parameters is that they can also be 
used for detection of draft tube swirl when using a multiclass SVM to detect multiple types of 
faults. 

The features with the overall best classification performance are F_34_all, F_4_all, and F_24_all 
with close to 95% correct classifications. Due to the non-critical nature of detecting single 
cavitation events and the simplicity of the SVM model used, this is deemed an acceptable score. 
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This score may potentially be improved through the use of soft margin classifiers or non-linear 
classifiers specifically tailored to the cavitation detection application. 

Evaluation of the top three sensors also indicates that PP4 is the single best sensor to use while 
PP3 has the worst single sensor performance with only 80% correct classifications. Multiple 
sensors do not necessarily improve the performance of the classifier; however, there is a potential 
advantage to using multiple sensors for long term robustness. One potential way to take advantage 
of having multiple sensors would be to use two separate SVM classifiers each making predictions 
with a different sensor. A double sensor setup such as this would allow a faulty sensor to be 
detected and provide data for identifying false negatives and false positives.  

It should be noted that although this case study does not directly address collecting cavitation 
intensity, the internal structure of the support vector machine includes a way to quantify the 
distance that each feature data point is from the internal classification boundary (the SVM 
hyperplane). This distance is called the SVM score and can be used to measure cavitation 
intensity. 

 

Conclusion 

In this paper we present a case study that shows how a support vector machine classifier can be 
used to accurately identify cavitation in a hydroturbine – the first step towards estimating 
cavitation erosion rates. The support vector machine is trained and tested on proximity probe data 
without the use of more common cavitation detection sensors such as accelerometers and acoustic 
emission sensors. Furthermore, the support vector machine is trained using data collected during a 
100 second ramp-down, which allows it to be easily calibrated with minimal interruption to 
normal operation of the hydroturbine. The combination of the use of a machine learning 
algorithm, proximity probes, and ramp-down data for cavitation detection will make long term 
cavitation data collection to be easier and more accurate, which in turn will allow cavitation 
erosion rates to be more easily estimated. 
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