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ABSTRACT
Operation of autonomous and semi-autonomous systems in

hostile and expensive-to-access environments requires great care
and a risk-informed operating mentality to protect critical system
assets. Space exploration missions, such as the Mars Exploration
Rover systems Opportunity and Curiosity, are very costly and dif-
ficult to replace. These systems are operated in a very risk-averse
manner to preserve the functionality of the systems. By con-
straining system operations to risk-averse activities, scientific
mission goals cannot be achieved if they are deemed too risky.
We present a quantifiable method that increases the lifetime ef-
ficiency of obtaining scientific goals via the implementation of
the Goal-Oriented, Risk Attitude-Driven Reward Optimization
(GORADRO) method and a case study conducted with simulated
testing of the method. GORADRO relies upon local area infor-
mation obtained by the system during operations and internal
Prognostics and Health Management (PHM) information to de-
termine system health and potential localized risks such as areas
where a system may become trapped (e.g.: sand pits, overhangs,
overly steep slopes, etc.) while attempting to access scientific
mission objectives through using an adaptable operating risk at-
titude. The results of our simulations and hardware validation
using GORADRO show a large increase in the lifetime perfor-
mance of autonomous rovers in a variety of environments, ter-
rains, and situations given a sufficiently tuned set of risk attitude
parameters. Through designing a GORADRO behavioral risk
attitude set of parameters, it is possible to increase system re-
silience in unknown and dangerous environments encountered in
space exploration and other similarly hazardous environments.

∗Address all correspondence to this author.

NOMENCLATURE
α Reward Potential: Output of the GORADRO scoring algo-

rithm (Eqn. 1)

ζn Risk Attitude Parameter: Optimization parameter from the
GORADRO scoring algorithm (Eqn. 1) used to control the
behavior of the model

V Immediate Value: Used in the GORADRO scoring algo-
rithm

ρ Value Density: Used in the GORADRO scoring algorithm

Ψ Lifetime Returns: The performance indicator for trials rep-
resenting the predicted scientific returns of the rover over its
lifespan (Eqn. 2)

E Scientific Efficiency: The rate at which the rover obtains
scientific targets (Eqn. 3)

L Lifespan: how the long the rover is operational (Eqn. 6)

∆S Accumulated Science: The number of scientific targets the
rover reached

∆t Elapsed Time: The amount of time the rover has operated

λ Failure Rate: the statistical rate at which the rover breaks
down due to terrain hazards (Eqn. 4)

h The discrete hazard value for a given point on the map

Π Average Failure Rate: the time average failure rate (λ ) of
the rover

F Probability of Failure: The probability that the rover will fail
after a given period of time (Eqn. 5)

1 Copyright c© 2016 by ASME



INTRODUCTION
In August of 2014, the Mars Science Laboratory and its op-

erators at the National Aeronautics and Space Administration
(NASA)’s Jet Propulsion Laboratory (JPL) faced a difficult de-
cision. Preliminary drilling at a site called Bonanza King had
shown the potential for significant discoveries [1], but the rover
was still a long way from its mission objective at Mount Sharp
and in a state of uncertain, though clearly deteriorating, health.
The decision was made by mission controllers and engineers to
leave Bonanza King and the discoveries that may have waited
there, and continue on to Mount Sharp [2]. But what if the re-
sults gleamed from further drilling at Bonanza King would have
surpassed the rover’s findings at Mount Sharp? What if the rover
was at a healthy enough state to accomplish both missions? Sit-
uations like this and the questions that arise from them are com-
mon in deep space missions and, as we explore farther into space,
they will only become more prevalent.

One possible solution to this problem comes from psychol-
ogy where the concept of the risk attitude has been thoroughly
studied in human behavior [3]. A risk attitude is defined as how
willing people are to accept risks. By applying these same ideas
to autonomous vehicles, we can regulate autonomous decision-
making process and, through that, control autonomous system
behavior. Designing risk attitude-based control algorithms and
the behavior models to fit them requires large amounts of data
and optimization. This paper details the process for optimization
of these behaviors through a case study on a simulated rover,
based on physical hardware.

The model presented in this paper was developed to em-
power rovers and similar exploration vehicles on extraterrestrial
worlds to autonomously make critical mission decisions towards
the purpose of maximizing the scientific returns of the mission
without the need for constant human intervention. This is nec-
essary as we explore deeper into space where research platforms
will encounter more situations that need to be addressed in short
order without waiting for Earth-based controllers to intervene in
order to keep the mission going. The average communication de-
lay between operators on Earth and scientific platforms on Mars
is 20 minutes [4], and with new missions going even deeper into
space, to targets such as Titan [5] or Europa [6], the communica-
tions delay will make the current practices used on Mars rovers
of operator guidance and intervention unfeasible [4].

To solve this problem, the Goal-Oriented, Risk Attitude-
Driven Reward Optimization (GORADRO) model for au-
tonomous behavior presented in this paper uses a set of parame-
ters representing a risk attitude to drive decision-making. Using
this process, the GORADRO algorithm can weigh the relative
impact of terrain-based hazards and potential scientific targets
both in the immediate future and in the long term, in order to
maximize long term mission returns without requiring supervi-
sion from Earth-based operators. This level of autonomy will be
critical to future deep space missions.

BACKGROUND
The GORADRO method builds upon several topics from

the fields of risk analysis, Prognostics and Health Management
(PHM), decision theory, and autonomous mobile platform con-
trols. Previous risk attitude informed path finding methods have
only considered a single risk attitude parameter. The GORADRO
method builds upon this foundation by considering a more com-
plex risk attitude in relation to hazards, scientific returns, and
topographical features.

Prior Work
GORADRO was developed to fill the need for a light-

weight, yet versatile algorithm capable of making autonomous
decisions which are not only risk-informed, but also consider the
reward of all possible actions. The simple nature of this method
allows it to be run on a simple processor with very low energy
consumption or heat dissipation. Prior studies have been con-
ducted to test the validity of GORADRO against other opera-
tional models [7] and to qualify the relationship between terms
in the model with respect to overall performance [8].

Risk Analysis
Risk analysis serves as the basis for risk-informed design

and decision making. Many techniques exist and are being de-
veloped in the fields of PHM and Decision-Based Design (DBD)
in order to make risk-informed decisions. The process of deci-
sion making within PHM is known as Prognostic-Enabled De-
cision Making (PDM). Several methods including Failure Flow
Decision Function (FFDF) [9], Active Mission Success Esti-
mation (AMSE) [10], Uncoupled Failure Flow State Reasoning
(UFFSR) [11], and Failure Flow Identification and Propagation
(FFIP) [12] use PHM or DBD concepts to identify risks in the
system’s – in this case the rover’s – health and make informed
decisions to extend the system’s lifespan while maximizing its
efficiency.

FFIP models how failure can propagate through a system
leading to system failure. FFIP builds upon the structure of a
Function Basis for Engineering Design (FBED) [13], which is
a method of representing a complex system as a series of func-
tional blocks representing functionality in the system and flow
lines representing the passage of energy, matter, and information
through the system. Failure in FFIP initiates at one function and
then propagates along flow lines to other functions potentially
leading to system failure. An example of a FFIP failure path in
component terms (functional terms) for a planetary rover is a so-
lar panel (collect energy) failing, leading to a battery draining
(store energy), leading to loss of power (electrical energy flow),
leading to loss of the entire rover.

UFFSR [11] builds upon the foundation of FFIP, but ac-
counts for failures that do not follow flow lines and instead prop-
agate through physical space. An example of a UFFSR failure
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path using a Unmanned Aerial Vehicle (UAV) is a battery (store
energy function) overheating and combusting and then fire (en-
ergy flow) spreading throughout the craft and damaging the CPU
(process function) leading to loss of the entire UAV.

FFDF [9] is a method based on PDM that analyzes the
way failure propagates through a system along FFIP and UFFSR
paths, and attempts to make control decisions that force the fail-
ure down the paths that have the lowest probability of causing
critical system failure. An example of FFDF would be the deci-
sion made by a person when falling on whether or not to reach
out and catch themselves, potential injuring their wrist, but stop-
ping their head from hitting the ground. AMSE [10] builds on
the FFDF method by putting it into a mission structure and ana-
lyzing a decision’s effect on total mission success as the mission
progresses.

Risk Attitudes

The concept of a risk attitude is taken from psychology
where it is used to quantify a person’s willingness to take risks
[3,14]. Risk in this sense is broken down into three components:
chance, uncertainty, and reward. Chance is defined as the effect
of uncertainty on goals [15] where uncertainty is the potential
for multiple outcomes given a single event with poorly defined
probabilities [16]. Finally, reward is taken as the worth or value
of the outcome [16].

Between these three concepts, we can construct a robust
model for risk-informed decision making and use it guide the
rovers through a risk-inherent environment. Risk attitudes can
be placed on a spectrum between total risk aversion and total
risk tolerance. A risk averse attitude is an attitude that is less
likely to accept increase reward in exchange for increased risk.
Using a person crossing the street as an example, a risk averse at-
titude may manifest as the person standing at the cross walk and
waiting for the appropriate light and walking signal before cross-
ing the street. A risk tolerant attitude is an attitude that is more
likely to accept increased risk in exchange for increased reward.
An example of a risk tolerant behavior using the street crossing
example is a person who is more likely to jaywalk in the interest
of saving time.

Prior experiments with the Risk-Attitude Informed Route
planning (RAIR) method have shown that rovers in such an envi-
ronment cannot be entirely risk-adverse while continuing to com-
plete mission objectives [17]. GORADRO uses a spread of risk
attitudes in order to balance accepting risks and preserving rover
health while continuing to accomplish mission objectives. The
results of this paper show how the model’s drive to reach scien-
tific targets is balanced against its aversion to hazardous terrains
in order to maximize mission returns.

Path Finding
Path Finding utilizing heuristic evaluation of terrain has

been performed computationally since the 1960s [18] and is used
currently to solve problems within logistics, infrastructure, aero-
nautics, navigation, and robotics [19]. Existing robotics applica-
tions of path finding include warehouse item management, secu-
rity patrolling, tour guiding, and exploration. The RAIR method
is an existing method that attempts to quantify an appropriate risk
attitude for an environment while path finding in a hazardous en-
vironment. The GORADRO method attempts to better address
the problem of risk attitudes for path finding in a hazardous envi-
ronments by breaking down the risk attitude into multiple pa-
rameters representing specific classes of hazards and rewards.
This multivariate approach allows for the study and generation
of more complex risk attitudes and reduction of risk of failure
faced by the system.

METHODOLOGY
The GORADRO model for autonomous behavior uses a set

of parameters which represent a risk attitude to weigh the rela-
tive cost and benefit of terrain hazards and scientific rewards in
order to determine the best course of action throughout the life of
the mission. Using the GORADRO algorithm the rover or other
autonomous system can easily pathfind through risk-inherent ter-
rain, such as that found on Mars, the Moon, and many other areas
of interest for autonomous scientific missions.

Development
GORADRO was developed to fill the need for an au-

tonomous behavior that considered not only the risk of failure
from decision, but also the potential reward from that decision.
This trade off of risk and reward is crucial to making fully in-
formed decisions with regard to mission success. Utility theory
provides a framework in which rover health and scientific return
can be compared through the GORADRO model in order to find
a balance which allows for better performing rover missions on
extraterrestrial worlds.

Behavioral Model
The GORADRO model uses a weighted parameter model to

compare the relative benefits and risks of scientific targets and
hazards in the vicinity of the rover [7]. The algorithm, shown in
Eqn. 1, is used to calculate the reward potential (α) of a specific
point of interest. The point of interest with the highest reward
potential is chosen as the next destination as discussed below.

α = ζ1 ·Vscience−ζ2 ·Vhazard +ζ3 ·ρscience−ζ4 ·ρhazard (1)

The other variables which appear in this equation are V , the
immediate value of either the scientific target or the hazard level
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of the terrain at the point of interest; and ρ which is the aver-
age density of scientific targets or terrain hazards in the general
area about the point of interest. Finally, the set of ζ1−ζ4 in this
equation constitute the risk attitude.

Risk Attitude Breakdown. Each of the four terms and
their respective risk attitudes has a specific purpose and address
both an environmental and a time concern of the analysis. ζ1 and
ζ3 look at the reward from an action while ζ2 and ζ4 address the
risk of an action. Similarly, ζ1 and ζ2 are applied to values from
the immediate spacial area and so near future while ζ3 and ζ4
act on measurements of areas in order to predict long term future
conditions. Other environmental or internal state factors could be
added into the model for operations in unique environments but
these four where found to be the most robust basis for decision
making [8].

Autonomous Operations
If every possible point in the environment was evaluated for

the reward potential (α) at that point and compiled, that set would
constitute a Surface of Reward Potential (SoRP) showing the re-
ward potential for any arbitrary point. On this SoRP, we would
expect scientific targets to generally appear as local maximums
and hazardous regions to generally appear as local minimums. In
order for GORADRO to follow the most efficient path between
points of maximum reward potential, it would merely need to
follow the gradient of the SoRP.

However, generating this surface and performing advanced
mathematical operations on it is unreasonably complex for a de-
ployed rover with limited computational resources. As such,
in order to find a path through the environment in which the
autonomous system is exploring, the GORADRO model regu-
larly calculates the reward potential of several discrete, evenly
spaced points equidistant from the rover as shown in Figure 1,
and chooses the point with the highest reward potential as the
next destination. This process is analogous following the gradi-
ent of the SoRP and while there is an error associated with the
resolution at which the model is sampling surrounding area, it
can be effectively reduced by increasing the number of sampling
points [7].

Input to Algorithm
The values for Vscience, Vhazard, ρscience, and ρhazard in Eqn.

1 come from information about the environment the model is
operating in. Since these parameters need to be numerical rep-
resentations of physical concepts, the information acquired by
sensors on the physical rover needs to be pre-processed by risk
analysis techniques in order to obtain these numerical represen-
tations. These types of algorithms are very well established and
not discussed in this paper which will continue to focus on how

FIGURE 1. A REPRESENTATION OF GORADRO’S SAM-
PLING PROCEDURE TO FIND THE POINT OF GREATEST RE-
WARD POTENTIAL. THE TOPOGRAPHICAL LINES REPRE-
SENT THE SURFACE OF REWARD POTENTIAL (SoRP). THE
SECOND ARROW SHOWS HOW THE MODEL’S SELECTION
COMPARES TO THE TRUE GRADIENT OF THE SoRP.

the GORADRO algorithm employees the results of these analy-
ses in order to make decisions.

Parameter Tuning
The risk attitude of the model represents the preference of

the model for scientific targets over terrain hazards or vise-versa
and quantitatively controls the choices made by the behavior. It
is this risk attitude that we seek to optimize in this analysis in
order to show the ability of the GORADRO model to increase
the lifetime scientific returns of a rover in various hazardous en-
vironments.

This optimization is performed through a case study which
utilizes a high resolution parameter sweep. The trials with best
overall performance are marked as the best trials and further anal-
ysis or investigation can be conducted from there. The process
for determining the performance of a rover in a trial is given be-
low.

Implementation
In order to successfully implement the GORADRO algo-

rithm for control of an autonomous vehicle, several factors must
be addressed before the algorithm can fully function. The first
factor is noise, which is addressed through the use of time aver-
aging. Small changes in the rover’s location can have large and
inconsistent effects on the reward potential, so the potentials for
each are averaged over the last several measurements before a
decision is made. The second is repetition. In order to prevent
the rover from returning to the same favorable point repeatedly, a
list of all visited targets is kept, and they are excluded from future
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analysis. Another factor is tied potentials; however, such ties are
unlikely given the volatile nature of the inputs and averaging pro-
cesses, and statically insignificant under the recalculation cycle
time and so are merely handled by the processing order of op-
tions. The final concern that must be address is potential wells.
In a potential well, the SoRP has a geometry such that when at
point A it is most favorable to travel to point B, and at point B
it is most favorable to travel to point A. In order to prevent the
rover from being trapped in such a state, a separate process from
the GORADRO algorithm checks at periodic intervals that the
rover has traveled a significant distance from the the point is was
at during the last check. If the rover has not, it is assumed to be
stuck and forced to drive outside the region without regard to risk
or rewards. As this clearly posses a threat to the rover, the time
interval and drive distance are carefully tuned to disrupt rover
operations as mush a possible.

Determining Performance
The overall performance of the GORADRO model is deter-

mined using Eqn. 2.

Ψ = E ·L (2)

Where Ψ is defined as the total gain or score of scientific
return, E as efficiency of reaching targets, and L as the estimated
lifespan of the rover. The processes for determining E and L
from the data are described below.

Determining the Scientific Efficiency. The scientific
efficiency of the rover is determined using the simple rate equa-
tion shown in Eqn. 3. Where ∆S is the science gained during the
mission/trial and ∆t is the elapsed time of the mission/trail.

E =
∆S
∆t

(3)

Determining the Lifespan. A statistical failure distri-
bution is used to find the average lifespan (L) of a rover behavior
based on the average terrain stress from hazards it encounters
during the simulation [17]. This distribution is driven by the fail-
ure rate due to terrain hazards given in Eqn. 4, where λ is the
failure rate for a discrete terrain hazard value of h. This equa-
tion is normalized for a 90 day mission under average terrain
stress [4, 8].

λ (h) = 1.583 ·e−(
h−11.03

4.511 )
2−0.00399 (4)

The chance of the rover failing after an elapsed time, t, is
built as F in Eqn. 5 and based on the failure rate where Π is the

time average hazard rate (λ ).

F(t) = 1−e−Π t (5)

Finally, the average lifespan of a rover for the purposes of
this analysis is taken to be when the chance of failure is equal to
95%.

F(L) = 0.95 (6)

While deployed rovers may fail long before this point in time,
this analysis assumes that hazards contribute to wear on the
rover without risking immediate failure on exposure such that
the buildup of wear will follow statistical averages.

In Summary
GORADRO represents a new approach to making au-

tonomous decisions based on both the potential rewards and in-
herent risk for any action. This methodology allows for greater
autonomy in scientific rover platforms deployed in risk-inherent
terrain by providing a framework for comparing the relative ben-
efits and risks of scientific targets and terrain-based hazards using
the concept of a risk attitude.

CASE STUDY
In order to quantify the effectiveness of risk attitudes in con-

trolling autonomous behavior, we developed a case study to test
a wide range of risk attitudes. Using the simulated environment
described below, we examined the performance of a rover operat-
ing using the GORADRO model with 4,096 unique risk attitudes
each on two maps in search of trends in the response of the model
across both maps. Through this study we found that there was a
cluster of risk attitudes which consistently performed above av-
erage.

Simulation Model Environment
The simulator used in this case study is the Simu-

lated Physics and Environment for Autonomous Risk Studies
(SPEARS) developed by the Van Bossuyt Research Group at
the Colorado School of Mines. The SPEARS simulator allows
rovers with custom-written autonomous behavioral models to be
placed in artificially-generated landscapes and allowed to explore
under a variety of conditions. While it is possible to simulate
communication with the rovers, the trials presented in this pa-
per have the rovers explore an unknown environment completely
autonomously.

In order to provide mission conditions for the simulated
rovers, SPEARS generates both scientific targets and terrain haz-
ards for the rovers to seek out and avoid. The trials developed as
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FIGURE 2. A SCREEN CAPTURE OF THE SPEARS SIMULA-
TOR SHOWING A MAP. IN THIS IMAGE, HEIGHT IS SHOWN AS
THE COLOR GRADIENT FROM BLACK TO RED, SCIENTIFIC
TARGETS ARE SHOWN IN MAGENTA, AND THE DARK GRAY
SECTIONS ARE SEVERE TERRAIN HAZARDS. THE GRID-
LINES ARE 1 METER SPACING.

part of this research used discrete, binary targets and a continu-
ous range of hazards of varying magnitudes. It is also possible to
use targets of varying magnitudes and discrete regions of binary
hazards for the purposes of experimentation. However, for clar-
ity in this paper we have limited the case study to binary targets
and a continuous range of hazards. A screen capture of SPEARS
displaying a region of one of the maps used in the trials is shown
in Figure 2.

Experimental Setup
Targets and Hazards. SPEARS provides scientific tar-

gets and terrain hazards to the autonomous behavior as binary
or integer values which are well-suited for the algorithm to pro-
cess and respond to. Again, this simplification to integers masks
pre-processing that would come from processing external inputs
and sensor data through risk analysis techniques in a deployed
system. For the purposes of testing the autonomous behaviors,
these processes and their inaccuracies are currently ignored so
that the focus of this paper remains on the performance of the
autonomous GORADRO algorithm.

Parameter Choices. In order to identify trends in the
correlation between GORADRO’s risk attitude and its lifetime
scientific gain, and in order to find the ideal behavioral parame-
ters, a parameter sweep was conducted over ζ2, ζ3, and ζ4 with
ζ1 held fixed. ζ1 is held fix to avoid analyzing non-unique at-
titudes. Based on the linear nature of the algorithm, the at-

TABLE 1. VALUES FOR THE PARAMETER SWEEP ACROSS
THE RISK ATTITUDE

Parameter Low Value High Value Step

ζ1 1000 1000 0

ζ2 15 30 1

ζ3 50 90 2.666

ζ4 0 1 0.066

titude {2,6,8,4} will represent the same behavior as the atti-
tude {1,3,4,2} due to even scaling not effecting the comparative
weighting. The ranges used in the parameter sweep of the other
parameters were taken from prior work in the optimization of this
model [8] and are shown in Table 1. This parameter sweep pro-
vides 4,096 data points over which GORADRO’s performance
can be analyzed.

Table 1 shows that the magnitude of the parameters being
examined differed greatly. It is important to note that not all of
this difference comes from the influence of that parameter on the
model. For instance, it is inaccurate to say that ζ1 is 10 to 20
times more important than ζ3 because the scale of their coupled
terms is also different. The Vscience term coupled with ζ1 in Eqn.
1 will never be more than 1, while the Vhazard term with ζ3 may
be any number from 0 to 10, and so the difference in magnitudes
of the input parameters is inversely shown in the magnitude of
the risk attitude parameters.

Other Variables. In order to account for the diversity
in the environments GORADRO may face on deployment, the
parameter sweep is performed on two different maps. Terrain
elevation, magnitudes of surface hazards, and spacing between
scientific targets can all dramatically affect GORADRO’s per-
formance for a given risk attitude. Since we are interested in in-
vestigating GORADRO’s performance in different environments
with similar conditions, each of the two maps has the same aver-
age density of scientific targets and hazards, and follow similar
topography profiles.

RESULTS AND DISCUSSION
Experimental Results

The results from the trials from both maps show clustering
of high performing risk attitudes, shown in Figure 3 with blue
circles. These two bubble charts show the estimated lifetime sci-
entific return, Ψ from Eqn. 2, with the better performing trials
appearing red and larger while the lower performing trials ap-
pear small and yellow-green. The results are scaled non-linearly
to accent the grouping.
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FIGURE 3. THREE-DIMENSIONAL PLOTS OF THE TOP 30%
OF TRIAL RESULTS FROM BOTH MAPS SHOWING THE PER-
FORMANCE OF TRIALS, Ψ. THE BETTER TRIALS ARE
SHOWN AS BEING LARGER AND REDDER.

FIGURE 4. THE SPREAD OF THE PERFORMANCE OF ALL
RISK ATTITUDES ACROSS BOTH MAPS, NORMALIZED TO
THE BASELINE PERFORMANCE.

Analysis of Data
In order to demonstrate the increase in lifetime efficiency

from the GORADRO method, a baseline was calculated for each
map by simulating a rover which drove from target to target, al-
ways choosing the closest target as the next destination without
any of the environmental considerations used by GORADRO.
Using this baseline, the results of each map were scaled to find
the performance of each risk attitude as a percentage of the base-
line. A histogram showing the distribution of the performance
for all risk attitudes across both maps is shown in Figure 4.

While many of the risk attitudes performed below the base-
line (with the greatest concentration around 50%), a consider-
able number of attitudes on both maps performed well above the
baseline (Map 2 does have over 90 risk attitudes above this line),
increasing the effectiveness of the rover by nearly 100% in some
cases.

However, as can be seen in the difference of the distributions
of the bubble charts in Figure 3, the high performing attitudes
across the two maps are very distinct with little to no overlay.
This difference in the underlying nature of high performing risk
attitudes speaks to a high environmental dependence in the opti-
mal values of the the risk attitude that should be explored further.

Another notable trend can be seen in the two-dimensional
cross section of the data. Figure 5 shows a range of cross sections
of the values from the trials on the first map (which are shown in
Figure 3). As can clearly be seen, the data forms ridges of higher
performance consistent across all the cross sections of the data.

Interpreting Results
In order to more clearly visualize trends in the data, the 100

highest scoring trials from each map were mapped onto parallel
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FIGURE 5. A SMALL SAMPLING OF CROSS SECTIONS OF
THE TRIAL RESULTS FROM MAP 1 WHICH SHOW A CLEAR
PATTERN OF RIDGES OF HIGHER PERFORMANCE.

axis plots which are shown in Figure 61. In the plot for map 1 we
see a clear trend of high ζ2 and low ζ3 values, thought the values
for ζ4 are far more varied. In the plot for map 2, there are two
clusters of values for ζ2 and a very strong trend to low values of
ζ4.

Effect of Environmental Differences
In order to generally explain the trends seen in the parallel

axis plots (Figure 6), we look to differences in the environment of
the individual maps. Each map was generated using the same pa-
rameters but evolved differently throughout the generation. Table
2 shows the differences in basic properties of each map’s envi-
ronment.

The higher average hazard level on the first map can be at-
tributed to the low value trend in ζ4 which accounts for the area
hazard, not due to a lower importance of this factor, but a numer-
ically larger input for ρhazard. This increase in the average map
hazard also caused all of the rovers to see a significantly lower
operational lifetime resulting in a lower baseline and making it
harder for rovers to achieve higher performance levels. This in-
creased difficulty resulted in the distinction between the large

1It is important to note that the color scheme for this plot is opposite of the
other figures presented here for readability purposes.

FIGURE 6. A PARALLEL AXIS PLOT SHOWING THE TRENDS
BETWEEN THE HIGH PERFORMING RISK ATTITUDES ON
BOTH MAPS.

TABLE 2. LISTING OF MAJOR ENVIRONMENTAL PROPER-
TIES FOR EACH OF THE MAPS USED IN THE CASE STUDY.

Property Name Map 1 Value Map 2 Value

Average Hazard: 0.903 0.825

Number of Targets: 747 750

Target Cluster Density: 0.125 trgts/m2 0.108 trgts/m2

Elevation Change: 2.047 m 1.214 m

Roughness: 0.014 m 0.012 m

number of high performing attitudes and dispersed grouping in
the map 1 data, and the lower number of high performing atti-
tudes and tight clustering of the map 2 data.

Similar correlations can be noted in the map 1 data. The
lower hazard rate and better clustering of targets resulted in a
map that was much easier to perform well, which allowed a
greater range and number of risk attitudes to achieve perfor-
mances above 100%. Likewise, this cluster could be attributed
as the cause for the trend in low values of ζ3 for the same rea-
sons the map 2 trials saw low values of ζ4.

The exact and quantitative relationship between environ-
mental factors and the risk attitude parameters requires further
and more detailed study. However, the results of this case study
provide a good starting point for the advancement of that re-
search. Furthermore, despite the difference in what risk attitudes
performed well in each map, the results of this case study clearly
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show that the implementation of properly tuned risk attitudes
to the behavior of autonomous rovers can dramatically improve
their lifetime performance.

Influences of Design
The physical design of the rover plays a large part in deter-

mining appropriate risk attitudes. It is important to acknowledge
that the robustness of the design and scientific equipment of the
rover contribute heavily into the value calculations for the en-
vironmental hazards and scientific rewards. For instance, frag-
ile vehicles will consider most terrain hazards to be of greater
risk to the rover than a more robust vehicle would. Similarly,
a point of scientific interest would only be considered a valid
target for a rover that has the appropriate equipment to take the
required measurements. The design decisions that control the fi-
nal rover configuration play a critical, if largely silent, role in the
GORADRO method, coming into play in the risk analyses which
provide the input parameters for Eqn. 1.

CONCLUSIONS AND APPLICATIONS
From the case study and results presented above, it is clear

that properly designed risk attitudes can dramatically affect the
overall performance of an extraterrestrial rover. Properly tuned
risk attitudes on both maps showed an increased performance
of up to 200% of the baseline. If applied to deployed systems,
GORADRO may convey that same increase in the efficiency of
deep space mission without contributing to payload weight and
while saving money on Earth-based operators and time on deep
space communication channels. These kinds of savings and effi-
ciencies are critical to future missions as we push farther into the
reaches of space and explore even more distant worlds.

Future Work
Future research to be conducted on the GORADRO model

includes detailed testing and quantifying how the impacts of en-
vironmental features, such as target and hazard density, impact
the magnitudes of the risk attitude parameters as well as the re-
lated impacts on the uncertainty of values such as the terrain risk
and location of scientific targets. A separate line of questioning
to be explored is how risk attitudes evolve with time over the
course of the mission lifetime, as failures early in the rover’s life
as a result of high risk decisions have a much greater impact on
overall performance and mission goals than the same failure near
the end of the mission. Finally, as a separate performance valida-
tion, the GORADRO method should be compared against exist-
ing risk mitigation methods such as RAIR which do not consider
reward in decisions.
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ACRONYMS
AMSE Active Mission Success Estimation

DBD Decision-Based Design
FBED Function Basis for Engineering Design
FFDF Failure Flow Decision Function
FFIP Failure Flow Identification and Propaga-

tion
GORADRO Goal-Oriented, Risk Attitude-Driven Re-

ward Optimization
JPL Jet Propulsion Laboratory

NASA National Aeronautics and Space Adminis-
tration

PDM Prognostic-Enabled Decision Making
PHM Prognostics and Health Management
RAIR Risk-Attitude Informed Route planning
SoRP Surface of Reward Potential

SPEARS Simulated Physics and Environment for
Autonomous Risk Studies

UAV Unmanned Aerial Vehicle
UFFSR Uncoupled Failure Flow State Reasoning
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