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ABSTRACT 
 

Algorithms used in rovers for route planning often 

focus on finding the shortest path between two points, but 

rarely take into account the risk to the physical roving 

system of taking a path. One issue presented by route 

planning optimized for risk is varying risk attitudes, which 

can lead to vastly different routes being chosen. A risk 

attitude is a preference concerning acceptable levels of risk 

to perform a specific action. The field of Prognostics and 

Health Management (PHM) aims to predict and prevent 

mechanical failure in electrical and mechanical systems, 

and can be used to inform route planning by assessing risk 

associated with taking an action. A method has been 

developed and is presented in this paper for Risk Attitude 

Informed Route-planning (RAIR) that takes into account 

the calculated risk, the benefit, and risk attitude and selects 

the optimal route. The risks to the rover will be calculated 

by using rover PHM data, terrain information, and 

Function Failure Identification Propagation (FFIP) to 

determine risk of specific routes. The route is navigated 

incrementally by selecting the best route across a small 

segment and then determining the best route from the new 

position until the rover has reached the final destination. 

Results of experiments utilizing a simulated planetary 

rover navigating between points using RAIR are presented 

in this paper and the effectiveness of the method is 

discussed. Improved route planning through RAIR enables 

more autonomous navigation of hazardous and remote 

environments that accurately reflects the desired risk 

attitude without direct human planning or interaction than 

is currently available, thus reducing cost and time for 

exploratory rover missions to accomplish mission 

objectives. 

 
INTRODUCTION 

Planetary rovers are an incredible tool for exploration, 

[1] but are highly dependent on human operators in order 

to continue functioning. Route planning algorithms [2] can 

improve rover autonomy by reducing the amount of human 

time that must be spent planning routes for the rover. Route 

planning algorithms can be enhanced by the use of 

Prognostics and Health Management (PHM) [3-5] 

techniques which can predict and prevent mechanical and 

electrical failures in a system. This can extend the mission 

life of a rover, increasing the effectiveness of the rover as 

a scientific tool. Traditional route planning algorithms do 

not consider differing risk attitudes in the route planning 

decision making process. Risk attitudes are varying 

preferences towards acceptable levels of risk when 

performing actions, and can vary between individuals 

based on a number of factors. By utilizing risk attitudes in 

route planning, paths can be optimized to reflect the risk 

preferences of the operators and can therefore behave more 

autonomously in a way that is acceptable to the operators. 

This paper presents a novel method for Risk Attitude 

Informed Route-planning (RAIR) that uses optimization 

equations to enable decision making based on risk 

calculated using Function Failure Identification and 

Propagation (FFIP) [6-8].  
 

Specific Contributions 
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 The focus of this paper is on a novel method for mobile 

system operation optimization using PHM data and risk 

attitude information through the application of RAIR. 

RAIR allows for varying risk attitudes to be represented 

through behavior giving a higher degree of control over the 

behavior of a mobile system in a previously unknown 

situation.    By determining the optimum risk attitude for 

the mobile system, a higher likelihood of mission success, 

as defined by reaching a target location without operator 

intervention and without failure, can be achieved. 

 

BACKGROUND 

RAIR relies upon several topics including PHM 

techniques, optimization theory, functional failure 

modeling, and risk attitudes. Traditional PHM-informed 

route planning does not consider varying risk attitudes 

which lead to methods that are rigid and inherently biased 

towards an arbitrary risk attitude. RAIR aims create 

varying risk attitudes by modifying parameters in a 

constrained non-linear objective function.   

Autonomous Mobility in Robotics 

Autonomous mobility in robotic systems has a long 

history. Some of the earliest examples of autonomous 

mobile robots were William Grey Walter’s robotic 

tortoises, which navigated towards lights in the early 1950s 

and had control circuits containing vacuum tubes for 

decision making [9, 10]. Over the past several decades, 

autonomous mobile robots have become significantly 

more advanced and now utilize advanced controls to 

command their complex systems [11]. The National 

Aeronautics and Space Administration (NASA) currently 

have two active rovers on the Martian surface: Opportunity 

and Curiosity [12, 13]. NASA has also put two other 

rovers, Spirit and Sojourner, on Mars since 1997 [14]. 

Spirit is the twin of Opportunity sharing the same design 

and having been on Mars approximately the same amount 

of time. Spirit however failed prematurely due to becoming 

trapped in a dust pit on the ground and losing mobility. The 

dangers of unknown terrain conditions and large signal 

delay before human mitigating action can be initiated are a 

great threat in robotic planetary exploration. Curiosity is 

facing a similar fate as a result of unexpected damage to 

her wheels from unforeseen terrain conditions. The 

enhancement of robotics for planetary exploration through 

artificial intelligence and increased autonomy has a great 

potential and could greatly increase the breadth of human 

knowledge [15].  

Route Planning 

Route planning was first developed in the late 1960’s 

[16] and has been used widely in a variety of fields 

including transportation infrastructure, aerospace, 

automotive, and robotics [17-20]. In the field of robotics, 

route planning can be used in commercial applications in 

warehouse settings, security, tour guiding, or exploration. 

NASA researchers developed the OASIS autonomous 

science system [15] which provides a method for planning 

of rover scientific activities. OASIS allows for the 

managing of long term objectives with opportunistic 

scientific actions while generating a mission and route 

plan. Many route planning techniques involve the use of 

optimization techniques [21] to determine the best 

available path. These specific optimization objective 

functions [22] can vary, but generally are a non-linear 

constrained function that looks at the direct linear distance 

between two discrete points. PHM-enabled route planning 

has been under development for the past several years [22-

24] and has shown to be effective, but has not taken into 

account varying risk attitudes in their decisions.  

Prognostics and Health Management  

PHM attempts to predict and mitigate electrical and 

mechanical failure in systems. Many methods exist for 

PHM analysis and every method possesses strengths and 

weaknesses for particular applications. The process of 

making decisions based on PHM information is referred to 

as Prognostic-Enabled Decision Making (PDM) [23] and 

can be used to decide what option presents the allowable 

level of risk to the system. This can be an incredibly useful 

tool in PHM analysis of a system because it can be used to 

calculate the potential damage that could be caused to a 

system by one component failing. One of the building 

blocks of PHM is the development of mathematic models 

of physical systems such as power, mobility, or control 

systems. These models are necessary for PHM because 

they offer a prediction of the results of taking an action on 

the physical stature of the system. Another critical aspect 

of PHM in a system is physical instrumentation in order to 

monitor the condition of the system. This is important 

because system models may not account for an unforeseen 

interaction affecting the system and live monitoring of the 
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system is the only viable option for knowing its current 

status.  

Functional Modelling 

Functional modelling is used to represent complex 

systems from a functional basis. One common tool used 

for functional modelling is the Functional Flow Diagram 

(FFD) [25]. The FFD represents functions within a system 

as blocks and tracks the flow of energy, material, and 

information through the system. The structure of a FFD is 

similar to that of a flow chart where the system blocks are 

arranged spatially and then the flows passing between are 

represented by arrows. The convention used for the flows 

in this paper are thick arrows representing object flow, thin 

arrows representing energy flow, and dashed arrows 

representing information flow. A color coding system is 

generally used to represent various specific subsets of 

flows. FFDs generally start with a very high-level black 

box model of the system inputs and outputs. This black box 

model tracks flows entering and exiting the system but 

doesn’t take into account any of the flows internal to the 

whole system. Below this layer is the system level. At this 

level, basic systems are described and related to each other, 

such as power, mobility, or control systems. The next layer 

down is the sub-systems. Sub-systems are the functions 

that make up the systems. The sub-system level is focused 

on in this paper. The FFD can be broken down even further 

in sub-sub-systems and so on until the desired level of 

representation is achieved.  

Function Failure Identification and Propagation (FFIP) 

can be used in tandem with FFD to analyze the flow of 

failure through a system. Failure in this case is defined by 

the loss of functionality. If the loss of functionality leads to 

system-wide failure, then it is deemed critical failure. FFIP 

looks at risk of failure at a point in a complex system and 

then analyzes the probabilities of the failure propagating 

through the system and causing critical failure. FFIP can 

be further enhanced through the application of Failure 

Flow Decision Functions (FFDF) [26] which can be used 

to make decisions that are intended to mitigate critical 

system failure.  

Risk Attitude  

Risk attitude is a term that describes a preference 

towards acceptable levels of risk [27, 28]. Risk can be 

defined as a parameter that describes the probability of 

damage to a system. Risk attitudes can be highly variable 

depending on the individual and can be influenced by 

culture, environment, work conditions, past experiences, 

and company culture, among other influences. Generally 

risk attitudes can be depicted by a utility function taking 

the form of a quadratic, exponential, or logarithmic curve 

[29]. Broad classifications of risk attitudes can be broken 

down into the two categories of risk aversion and risk 

tolerance [5]. The risk averting attitude can be described as 

taking the expected value and taking actions to preserve 

the value. An example of this attitude would be taking a 

dollar and putting it in a savings account with modest 

interest. This would have an incredibly low risk of loss of 

the money and a high chance of gaining a small amount. 

This is the more conservative of the two broad categories. 

Risk tolerant individuals are characterized by taking a 

higher risk of loss for a lower probability of a higher 

reward. An example of this behavior would be taking a 

dollar and using it to buy a lottery ticket with the potential 

of winning some large amount of money. This would have 

an incredibly low probability of making a large amount of 

money and a high probability of losing all the money. This 

is complicated further because risk attitude is not a strict 

binary and can include a wide variety of differing 

magnitude and attitudes towards differing classes of risk 

[27]. 

 

METHODOLOGY 

RAIR relies upon PHM, functional failure modeling, 

optimization techniques, and risk attitudes in order to 

determine the best available route to a target destination. 

The core of RAIR is an objective function that takes into 

account the most direct path to the target location, the 

current status of the roving system, the environment 

surrounding the roving system, the failure probability of 

sub-systems, and the probability of critical failure through 

propagation of failure through the system.  

The failure of the system is analyzed through FFIP 

analysis which utilizes the Function Flow Diagram (FFD) 

shown in Figure 1.  
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FIGURE 1. FUNCTION FLOW DIAGRAM OF SIMPLE ROVER 
 

The RAIR algorithm consists of 3 phases. The first is 

situational analysis. This consists of surveying the terrain 

around the rover to determine what paths are available. 

This can be performed at variable radiuses out from the 

rover and variable numbers of finite points. A large radius 

with a smaller number of points along the circumference 

of the area is preferable for a low risk environment when 

the terrain is relatively homogenous and hazard-free. A 

small radius with a larger number of points along the 

circumference is preferable for a high risk environment 

when the terrain is non-homogenous and contains hazards. 

The second phase is the decision phase which looks at the 

points selected in phase 1 and determines the optimal point 

to navigate towards. This is performed using a weighted 

objective function that looks at the potential distance 

towards object gained; the magnitude of potential risk 

caused by the action, and then weights them appropriately 

using the risk tolerance (ρ). The third phase is the 

navigation phase, where the rover orients itself in the 

desired direction and then proceeds to the chosen point. 

The process then repeats from phase 1. A detailed 

breakdown of the method can be found below. Equation 1 

details the objective function used.  

 

1. The rover determines its current location and 

heading. 

2. The rover determines the direction and distance 

to target position. 

3. The rover checks status of mechanical and 

electrical sub-systems. 

4. The rover looks at desired number of points 

evenly distributed at desired radius away from the 

rover.  

5. The rover determines direction to point, incline of 

surface towards point, distance between point and 

final destination, and environmental factors at the 

point.  

6. The rover takes information for each point and 

uses it to populate the variables of the objective 

function.  

7. The rover records the values of the objective 

function for each point. 

8. The highest scoring point is selected as the next 

point to navigate to.  

9. The rover rotates to align its heading with the 

desired point. 

10. The rover drives to the desired point. 

11. The process is repeated from step 1.  

 

 

Ω =
𝜃 − 𝜃𝑝

(𝜃 + 𝜃𝑝)/2
+ 𝜌

∆𝐿 − ∆𝐿𝑝 − 1

(∆𝐿 − ∆𝐿𝑝 + 3)/2
+ ∫𝜂 𝑑𝑙 

EQUATION 1. OBJECTIVE FUNCTION 
 

 

Where θ and θp represent the ideal and inspected point 

incline, ΔL and ΔLp represent the length to the target, ρ 

presents the risk tolerance, η represents the projected 

hazard rate at a point, and l represents the linear path 

between the current location and the target destination. 

In addition to these steps for navigating to the desired 

position, additional steps can be taken to determine the 

success of the rover in its navigation. If the rover becomes 

stuck and is unable to make significant progress across 
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hazardous terrain or determines that taking any action 

would present too great of a risk to move closer to the 

target, the rover will enter an idle state after a specific 

period of time. Alternatively, after the rover has reached its 

target destination it will enter the idle state.  

By following the above listed steps, a roving system 

can quickly and safely navigate through a largely unknown 

environment to a desired location. This method can be 

adapted for aquatic, aerial, or other terrestrial applications, 

by modifying the objective function to consider new 

environmental factors or system components. The 

versatility of RAIR also allows for it to be implemented on 

a wide variety of systems from low to high complexity and 

cost. This makes RAIR a valuable tool for optimization of 

system design for risk attitudes by allowing for more 

robust systems to take greater risks and less robust systems 

to take fewer risks.  

CASE STUDY 

To analyze the effectiveness of RAIR, a case study was 

performed on a simulation of a Mars planetary rover 

similar to the NASA Mars rovers Opportunity and Spirit. 

Simulations were performed utilizing a rover with a RAIR-

enabled variable risk tolerance. The RAIR-enabled rovers 

had a risk tolerance weight of 5, 10, 20, and 50. The risk 

tolerance weight (ρ) is a value that multiplies the perceived 

reward for an action, and therefore encourages the rover to 

drive towards the target. Preliminary testing showed that a 

ρ of 1 would almost always lead to a virtually immobile 

rover that had determined that the risk or locomotion was 

not worth reaching the target.  

A simulation was developed in Java of representative 

Martian landscape that randomly generates topography for 

the rover to navigate. Figure 2 displays the user interface 

of the simulation. Figure 3 displays a close up view of the 

rover on the terrain. Figure 4 displays a zoomed out view 

of the first map used in the testing. Low points on the map 

are colored dark red and high points are green.  

 

FIGURE 2. SIMULATION USER INTERFACE 
 

 

FIGURE 3. CLOSE UP VIEW OF A GENERATED MAP 
 

 

 

FIGURE 4. ZOOMED OUT VIEW OF A GENERATED MAP 
 

The simulated Martian topography is rather turbulent 

like a series of sand dunes and hills, and has a high 

potential for the rover to slip. This would be representative 

of a terrain that would be very difficult to navigate through 

using traditional rover navigation. This terrain was chosen 

in order to lead to a larger degree of difficulty and insure 

that all rovers could not easily reach the target destination. 
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The temperature of the Martian surface is taken to be -30°C 

which is a moderate Martian temperature. This affects the 

cooling rates of our electronics, which was used as a metric 

to determine probability of system failure.  

Four different maps were generated for this case study. 

This was to ensure that the map had not biased the results 

by being particularly favorable for a single method. The 

rovers were tasked with travelling approximately 100 m 

which was selected to represent a distance large enough to 

get a significant sample, but still small enough to be 

computationally feasible to perform multiple trials. Each 

method was tested eight times on each map giving a total 

of 32 trials for each rover and a total of 128 tests to provide 

enough data to allow for meaningful analysis. As the rover 

travels along the path, it records its current status and 

probability of critical failure. 

Using RAIR and analyzing risk to the system over time 

through active FFIP, the risk of the mission could be 

gathered. Results and discussion of the RAIR case study 

can be found in the next section.  

RESULTS AND DISCUSSION  

RAIR was shown to provide a significant difference in 

rover performance. Lower risk tolerances lead to generally 

safer results, as seen in Figure 13. The averaged mission 

risk in the form of hazard rate to the rovers was found to 

be 2.51%, 2.57%, 2.54%, and 2.64% for the risk tolerance 

of 5, 10, 20, and 50 respectively. The average mission life 

before 95% of the rovers were expected to fail was found 

to be 8.2, 7.3, 7.8, and 6.4 years for the risk tolerances of 

5, 10, 20, and 50 respectively. The mission hazard rate for 

each map can be seen in Table 1. Figures 5 through 8 show 

the routes taken between the start position and target point. 

The start point is near (0, 0) and the target point is near (70, 

70).   

TABLE 1. HAZARD RATE BY MAP 

 

 

 

FIGURE 5. PLOT ROVER PATHS ON MAP 1. YELLOW: ρ=5, 
BLUE: ρ=10, RED: ρ=20, GREEN: ρ=50 

 

ρ 1 2 3 4 ρ Mean

5 2.49% 2.63% 2.42% 2.51% 2.51%

10 2.72% 2.72% 2.44% 2.41% 2.57%

20 2.57% 2.60% 2.46% 2.51% 2.54%

50 2.80% 2.85% 2.42% 2.49% 2.64%

Map Mean 2.65% 2.70% 2.44% 2.48%

Map

Mission Hazard Rate (%)
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FIGURE 6. PLOT ROVER PATHS ON MAP 2. YELLOW: ρ=5, 
BLUE: ρ=10, RED: ρ=20, GREEN: ρ=50 
 

 

FIGURE 7. PLOT ROVER PATHS ON MAP 3. YELLOW: ρ=5, 
BLUE: ρ=10, RED: ρ=20, GREEN: ρ=50 
 

 

FIGURE 8. PLOT ROVER PATHS ON MAP 4. YELLOW: ρ=5, 
BLUE: ρ=10, RED: ρ=20, GREEN: ρ=50 
 

Most of the rovers tried to take a similar path for a 

particular map. Map 3 is particularly interesting, because it 

shows many of the rovers taking a very similar path, but 

only a small number of the more risk tolerant rovers made 

it through to the end.  

The calculated hazard rates vs time are displayed in 

Figures 9-13. A hazard rate is probability of system failure 

at an instantaneous time. The hazard rates were calculated 

by using a normal distribution of failure over the operating 

status of the components of the rover. Figure 14 shows the 

calculated failure distribution, which is the percentage of 

expected failures over time.  The failure distributions were 

found by using the mean of the hazard rates for each risk 

tolerance in an exponential failure distribution. 
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FIGURE 9. ROVER HAZARD RATE VS TIME ON MAP 1. 
YELLOW: ρ=5, BLUE: ρ=10, RED: ρ=20, GREEN: ρ=50 

 

FIGURE 10. ROVER HAZARD RATE VS TIME ON MAP 2. 
YELLOW: ρ=5, BLUE: ρ=10, RED: ρ=20, GREEN: ρ=50 
 

 

FIGURE 11. ROVER HAZARD RATE VS TIME ON MAP 3. 
YELLOW: ρ=5, BLUE: ρ=10, RED: ρ=20, GREEN: ρ=50 

 

FIGURE 12. ROVER HAZARD RATE VS TIME ON MAP 4. 
YELLOW: ρ=5, BLUE: ρ=10, RED: ρ=20, GREEN: ρ=50 
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FIGURE 13. FAILURE DISTRIBUTIONS. YELLOW: ρ=5, BLUE: 
ρ=10, RED: ρ=20, GREEN: ρ=50 
 

One trend through the data is that the risk tolerances of 

10, 20, and 50 tended to be more successful at reaching the 

target location than the rovers with a risk tolerance of 5. 

The risk tolerance of 5 reached the target destination in 

19% of the trials. The rovers with the tolerance of 10, 20, 

and 50 all reached the destination approximately 50% of 

the time. The cause for this trend appears to be that the 

rover with more risk aversion tends to not want to risk 

climbing steep hills and ends up staying in a valley driving 

back and forth until it shuts down. This implies that there 

is a minimum level of risk necessary to navigate the terrain. 

Table 2 shows the percentage of rovers to reach the Target 

position by map. 

TABLE 2. PERCENT ROVERS TO REACH TARGET BY MAP 

 

In general, the higher risk tolerances were more 

capable of reaching the target destination with 

comparatively little significant differences between the 

results of risk tolerances of 10, 20, and 50. The failure rates 

for the higher risk tolerances tended to be lower with the 

risk tolerance of 5 having a 95% predicted failure after 8.2 

years and the risk tolerance of 50 having a 95% predicted 

failure rate after 6.4 years. One final notable trend was that 

the risk attitude of 10 had a higher success rate of reaching 

the target destination than the risk attitude of 20, and a 

higher hazard rate. This is discussed further in the 

Conclusion and Future Work section.  

CONCLUSION AND FUTURE WORK 

The RAIR method presented in this paper is a novel 

method for planning routes that is optimized for risk 

attitudes using PHM methods for decision making. 

Previously, route planning algorithms had not taken into 

account variable risk attitudes in determining the optimal 

path. By using risk attitudes to inform the route planning, 

paths that are more representative of the operators desired 

level of risk can be achieved.  

RAIR was shown to have a significant impact on the 

level of risk presented to a system. This is largely in part 

to a reduced amount of time spent trying to climb overly 

steep hills leading to slipping and overheating.  

One interesting result was that the risk tolerance of 10 

seemed to accrue more risk than the risk tolerance of 20, 

but also managed to reach the target destination more 

often. This implies that there may be a more complex 

relationship between the risk tolerance applied to the 

optimization formula, and the actual risk that accrues. One 

possible explanation is that there is a region of risk 

tolerance where a rover is more likely to take a moderate 

risk, moderate reward action, and that these end up 

providing less reward over the long run than taking slightly 

more risk for more reward. Future studies should be 

performed to better study this relationship.  

Further refinement of RAIR will lead to a greater 

degree of control over acceptable level of risk and 

implementation of learning techniques could lead to a self-

adjusting RAIR that could self-optimize towards the 

desired risk level. Analysis of RAIR in use for more 

complex task completion could also provide optimized 

methods for determining task order in swarms or of solitary 

rovers. Finally combination of RAIR with a PHM 

Informed Damage Aversion Algorithm (PIDAA) [30] 

could allow the rover to better react to instantaneous risk 

instead of avoiding future risk while still potentially 

putting itself in harm’s way.  

Future work will focus on the development of rovers 

idealized for maximum mission life using RAIR by 

ρ 1 2 3 4 ρ Mean

5 13% 63% 0% 0% 19%

10 100% 88% 13% 0% 50%

20 100% 75% 13% 0% 47%

50 100% 100% 13% 0% 53%

Map Mean 78% 81% 9% 0%

Mission Success

Map



 10 Copyright © 2015 by ASME 

varying the robustness of the design of the rover.  Rather 

than building a rover meant for the harshest conditions and 

then using it in a very risk averse manner, or building a 

rover meant for minimal risk environments but then 

operating the rover in a very risk tolerant fashion, a rover 

can be designed for the risk attitudes of the operators. This 

could lead to greatly improved behavior for economical 

design.  
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