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ABSTRACT
Fuelled by recent technological advances, Machine Learn-

ing (ML) is being introduced to safety and security-critical appli-
cations like defence systems, financial systems, and autonomous
machines. ML components can be used either for processing
input data and/or for decision making. The response time and
success rate demands are very high and this means that the de-
ployed training algorithms often produce complex models that
are not readable and verifiable by humans (like multi layer neu-
ral networks). Due to the complexity of these models, achiev-
ing complete testing coverage is in most cases not realistically
possible. This raises security threats related to the ML compo-
nents presenting unpredictable behavior due to malicious ma-
nipulation (backdoor attacks). This paper proposes a methodol-
ogy based on established security principles like Zero-Trust and
defence-in-depth to help prevent and mitigate the consequences
of security threats including ones emerging from ML-based com-
ponents. The methodology is demonstrated on a case study of
an Unmanned Aerial Vehicle (UAV) with a sophisticated Intelli-

∗Address all correspondence to this author.

gence, Surveillance, and Reconnaissance (ISR) module.

1 Introduction
With the growing interest in machine learning (ML) ap-

plications and solutions, critical systems engineering choices
must start incorporating hitherto unaccounted risks from poten-
tial threats associated with ML data collection, training, and
ML-based decisions. Complex system design and risk assess-
ments are not foreign to system design and risk assessments:
cyber-physical systems such as drones, automated factories, au-
tonomous vehicles, financial investment systems, virtual assis-
tants, etc. have all benefited from such analysis [1–3]. Thus,
this work attempts to account for and adapting to the risks posed
by increasingly automated systems that use advanced ML tech-
niques in a systems engineering context.

Past losses of systems such as the Lockheed Martin RQ-170
Sentinel that crash-landed in an adversary’s territory provide the
inspiration for this work. In the case of the RQ-170, press reports
indicate that the ML aboard may have been fooled into descend-
ing until the air frame had a semi-controlled crash-landing. The
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culprit may have been spoofed Global Positioning System (GPS)
data being intentionally injected into the GPS sensors by the ad-
versary. While laboratory experiments had demonstrated the pos-
sibility of hijacking a UAV via GPS spoofing, to our knowledge
the RQ-170 incident was the first publicly reported incident pos-
sibly caused by this attack on the UAV’s ML. In the case of the
RQ-170, the air frame made a number of appearances in the ad-
versary’s state-run media and likely was analyzed by adversary
engineers [4–9].

A string of highly publicized vehicle accidents caused by
drivers blindly following GPS navigation directions provides fur-
ther inspiration. In these situations, a change in roadway config-
uration, an error in a map database, and other similar issues led a
number of drivers to drive their vehicles off of cliffs, into lakes,
and into other perilous situations. The drivers generally trusted
the ML that developed the directions their GPS devices provided,
and did not adequately question the directions for accuracy and
safety [10, 11].

The problem of blindly trusting ML extends into high-level
autonomous ground vehicles such as self-driving cars. Human
reaction speed is sufficiently slow that an issue with the ML such
as GPS spoofing, phantom images, and other physical-world at-
tacks on ML classification that a human taking control of a ML
piloted vehicle may not occur before the calamity occurs. In the
case of a ML-piloted system that has minimal or no human over-
sight (e.g.: a UAV operating in a denied environment where RF
and optical communications are unavailable or unreliable), re-
covery may be impossible [11–13].

While much effort goes into anti-spoofing and anti-hijacking
technologies, and ML error correction, events continue to hap-
pen. Adversaries who may wish to destroy or capture a ML-
equipped system continually improve techniques for carrying out
such activities. Further exacerbating the situation is increasingly
complex and opaque ML that is not deterministic in behavior. In
other words, in many cases ML cannot be 100% verified in its
responses to situations it may encounter.

One might question why ML is being used in safety-critical
and defense domains when such drawbacks exist. The new ca-
pabilities that ML enables in modern systems have been deemed
worth the potential risks. In many cases, ML can do a job with
fewer errors than a human and no need for rest periods. How-
ever, the latest advances in ML and relatively few reported direct
adversary actions against ML-equipped systems we believe has
produced a level of complicity in systems engineering develop-
ment processes that we intend this paper to begin to address.

Similar challenges to those facing systems with ML are al-
ready being addressed in the safety engineering domain for dif-
ferent types of critical systems that need to achieve a minimum
safety risk. System components are never absolutely reliable –
in other words no system component can be trusted and it is as-
sumed that a component will fail sooner or later. Apart from
increasing the reliability at a component level, such as by us-

ing new technologies, special system configurations and multi-
ple layers of defence are deployed to decrease the overall risk to
an acceptable level. For instance, Programmable Logic Devices
(PLDs) are not designed for safety-critical applications (although
manufacturers often claim otherwise) yet are still used in applica-
tions such as missile systems. When a PLD is initially powered
on, there exists a brief moment where the device is capable of
producing spurious output signals. In spite of this shortcoming,
PLDs are used extensively in missile systems in safety-critical
roles such as to activate and/or ignite rocket motors, separate
stages (e.g.: boosters, glide vehicles, etc.), activate wings and
control surfaces, detonate warheads, and actuate flight termina-
tion systems. While missile systems knowingly uses non-safety-
critical hardware for safety-critical applications, relatively few
incidents have resulted from their use. Part of the success of
PLD use in safety-critical systems is that systems engineers de-
sign with the knowledge that PLDs cannot always be trusted.

In summary: a challenge exists with the increasing uptake of
ML in systems, and with increased ML sophistication and opac-
ity. The contribution of this paper is a system design method-
ology based on Zero-Trust and defence-in-depth principles for
increasing the level of security and assurance when ML is incor-
porated to the system under development.

2 Background

2.1 Complex systems design challenges

Typically complex systems are developed through a system
design process that attempts to follow a model such as the V-
model, the waterfall model, the spiral model, etc. of how the
design process should proceed [14]. Complex systems are gen-
erally too complex for any one person to fully understand all
aspects of the systems and all potential outcomes for all poten-
tial inputs. Thus, many subject matter experts (SMEs) are em-
ployed to undertake specific portions of a system design. Often
times, systems engineers are used as the “glue” that binds to-
gether different SME efforts. In many cases, systems engineers
also conduct analyses to identify potential issues that cross dis-
cipline boundaries (e.g.: safety, security, and failure analysis).

Numerous methods such as Failure Modes Effects and Criti-
cality Analysis (FMECA), Probabilistic Risk Assessment (PRA),
hazard analysis, reliability analysis, and others exist to identify
potential issues that cross discipline boundaries and can have ad-
verse impact on the system [1–3, 14–17]. However, systems still
suffer “black swan events” where a deleterious emergent system
behavior occurs that was either not predicted or ignored during
system design [3, 18, 19]. Research is ongoing in this area in an
attempt to address these issues and produce safer, more reliable
systems.
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2.2 Current standards for security of critical infras-
tructure

Generic and domain specific standardization efforts help
with security related challenges when developing systems.
NIST guidelines cover the management of information security
risks [20] while the IEC 62443 series on security of industrial
networks and communication systems [21] focuses on manage-
ment and prevention of security risks and introduces key security
concepts like security levels, defense-in-depth, and segregating
systems into zones. A three part ISO standard, ISO/IEC 15408
[22], defines a set of security function design requirements and
also deals with requirements for security evaluation and assur-
ance. The ISO/IEC 27000 standard series (27001,2,3,4,5) [23]
focuses on cybersecurity technologies, as well as confidentiality
and privacy. These standards can help to inform complex system
design processes with a cyber component such as ML.

2.3 Security of ML-based components, ML verifica-
tion research, Adversarial ML

Security considerations are critical to ML from the point of
data collection and storage for use in training, through train-
ing and final model protection. Model training in ML requires
a significant amount of data – an aspect that has given rise to
legal concerns regarding the protection of data [24]. In some
cases, models can be trained without transparent data access, us-
ing techniques known as privacy preserving protocols [25,26]. In
all cases, protecting and tracing data from the point of collection,
through aggregation, and to training is essential to prevent data
tainting. Through data tainting or injection, an adversary may
not only affect the performance of the model in general but may
also cause unexpected model behavior. This latter issue is known
generally as adversarial AI or backdoors.

Adversarial AI can take many forms [27]. It usually in-
volves some tainted training data that contains a “trigger”; when
the model is later used on data that contains the trigger, it may
falsely classify the data. There has also been work on developing
triggerless adversarial AI for deep neural networks, wherefore
the adversary does not actually need to taint the training data
set [28]. While this variant of adversarial AI requires several
conditions to be met, such as the network type, it also indicates
progress towards making such backdoors in a model even more
difficult to control for or detect.

Methods for assessing the validity ML algorithms include
the training of two separate models, where one provides a pre-
diction rationale for the second [29]. While this method makes
headway towards verifying the ML model, it is not guaranteed to
protect against adversarial AI methods – including those yet to
be developed. Some methods of hardening an ML model against
adversaries, such as adversarial training, have the potential to
actually introduce backdoors unintentionally [30].

In yet another variation of validating ML models, explain-

able AI (XAI) [31–34] aims to provide verification of the model
output through an interpretation that is accessible to users. Such
approaches may simply employ an human-accessible interface
to the results or may also rely on a second model for prediction
rationale. Essentially, explainable AI aims for a human-in-the-
loop approach towards building verification and, as a direct con-
sequence, trust in the system.

While the above methods improve the evaluation of ML,
simple validation is an incomplete solution towards nullifying
full system security risk. ML models may degrade over time
[35], and some types of ML such as Federate Learning can lead
to cross-over bleeding between models, leading to more complex
adversarial attack strategies [36]. All of this points to the criti-
cality of strategic system risk assessment and non-trivality of risk
assessment for systems with ML components.

2.4 Zero-Trust security paradigm
Security assessment is dependent on a threat model, which

is built to capture specific adversarial behavior and define aspects
that are in scope. Within security analyses this naturally poses a
challenge, as an analysis can indicate security within the threat
model while the system is still vulnerable to attacks and adver-
sarial behavior not specifically described. From a system engi-
neering view, analyses focusing on core component interaction
may therefore yield positive results, even if a trivial error on the
part of human interaction with those components would render
the entire system insecure. This poses a risk to the overall sys-
tem. Such challenges have lead to research increasingly aiming
to capture risk assessments in more complex systems [37–39].

To address these challenges, the concept of a Zero-Trust ar-
chitecture has been used as a risk assessment framework [40].
As a premise, Zero-Trust assumes that any component in the sys-
tem or outside the system could be faulty or compromised (i.e.
capable of introducing accidental or adversarial effects). Zero-
Trust aims to capture system components, interaction, and hu-
man users. No item within the system bounds is out-of-scope.
Extensive work has looked at applying the Zero-Trust frame-
work to areas such as IoT, Big Data, and Infrastructure as a Ser-
vice [41–44]. Indeed, the Zero-Trust use has expanded in adop-
tion as far as standardization by U.S National Institute of Stan-
dards and Technology (NIST) [45].

As ML use develops and enters normal system use, so must
assessments expand to consider risks introduced in the data-for-
training acquisition, model training, and application of ML [46].
The use of ML for adversarial purposes points to the fact that,
while ML usefulness demands its integration, system security
assessors cannot afford to ignore potential risks introduced by it.
In short, just as human error and adversarial capability entered
system risk assessment, so must the ML. Zero-Trust provides a
grounding assumption for accepting and balancing the potential
risks of ML use.
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2.5 Zero-Trust in Systems Engineering
The Zero-Trust paradigm has recently been introduced into

the systems engineering community through treating both hard-
ware and humans as potential threats to a system regardless of
provenance. Hybrid attack-fault trees have been developed to
integrate failure analysis and security threats. At their core,
the methods being developed for systems engineers that use the
Zero-Trust paradigm trust no one and no hardware involved in
the design, manufacture, operation, and maintenance of systems.
However, these methods have largely ignored the role that ML
can play in introducing new avenues of attack. While safety in-
terlocks to prevent PLDs from triggering accidental detonation
of warheads have been standard for decades, similar techniques
have not yet been applied to ML when implemented into many
safety-critical and defense applications. Instead, more often than
not, the ML is implicitly trusted to do its job and not be compro-
mised.

3 Methodology
In this section we introduce a methodology for system se-

curity based on Zero-Trust and defense-in-depth and provide a
simple example. The goal of the proposed methodology is to
help the design of systems with security and safety measures that
can prevent and mitigate threats posed by ML components, even
if the specific attack vector is unknown at the time of the sys-
tem development. All system components (humans, engineered
systems, ML, and external environment) are considered as un-
trusted and thus a potential starting point of an attack. This is
even more important for ML components with decision-making
authority or that can feed into decision-making when the ML
components have non-verifiable behavior. The needed security
and safety measures can be based on knowledge databases with
generic solutions given the challenge, like e.g. to develop two
separate ML components by isolated teams and with voter block
logic. The proposed methodology follows the workflow shown in
Figure 1 and it sources information from all the system life-cycle
phases (design, testing, deployment, operation, maintenance, de-
commissioning, etc.).

Step 0: Before the main steps of the methodology are en-
tered, safety and security requirements from a zero-trust and
defense-in-depth perspective for the system must be set. We
advocate for setting a specific number of defense-in-depth ele-
ments required of key components to the successful operation of
the system. Further, we recommend a requirement that specifies
how diverse control systems (digital, analog, human, etc.) must
be. Finally, we suggest a requirement be set that guides identifi-
cation of internal and external threats. These pre-sets represent
the acceptable complexity bounds and security priorities.

Step 1: In the first step the goal is to identify the life-cycle
phases in which the system under study contains specific sys-

tem elements that hold sensitive information or elements that are
able to cause harm. For instance, the maintenance phase of a
system’s life-cycle could open a ML component being upgraded
to vulnerabilities from contractor maintenance personnel know-
ingly or unknowingly introducing adversarial AI.

Step 2: The next step calls for the identification of the spe-
cific system elements for every life-cycle phase that are “criti-
cal” (responsible for holding critical information or can directly
cause harm) and the creation of a dependency model of the sys-
tem and its environment. In other words, identify the potential
components or subsystems that have a significant consequence
associated with their loss, destruction, or disablement, and then
develop dependency trees for said components. For example, a
subsystem that if operated incorrectly by a hacked ML compo-
nent could destroy itself [47] should be identified in this step.

Step 3: In Step 3, the aim is to identify the signal, material,
and energy interfaces (we recommend the Functional Basis for
Engineering Design (FBED) ontology [48] for this purpose) of
the critical system elements within the system under study and
with the natural, constructed environment as well as with other
external systems. Furthermore the influences on the critical sys-
tem elements are analyzed for all of the relevant life-cycle phases
(e.g. design, component supply, assembly, testing, deployment,
and maintenance).

Step 4.N: This step provides additional defence-in-depth
layers. It calls for all the elements that interface or influence
a critical system element to be analysed in the same way as
a critical system element. In this concept, if only the inter-
faces/influences of the critical system elements are considered,
then they have only one layer of protection; on the other hand, if
we also consider the interfaces/influences on all the elements that
are linked to the critical system element, then we add a defence-
in-depth layer, etc. The additional levels of defense may not de-
ploy the full set of controls, depending on the mission of the
system under study and the resources available.

The following steps 5 and 6 take into account the Zero-Trust
principle. Every interface and influence has the potential to
compromise security. Authentication, monitoring, and security
checks need to be deployed in any case.

Step 5: The fifth step focuses on the internal and external in-
terfaces that associate with every critical system element where
an internal or external threat could manifest. Primary and diverse
secondary controls should be deployed for authentication, mon-
itoring, for blocking data leaks and for interlocking actions that
can cause harm.

Step 6: The influences relevant to the critical system ele-
ments are considered in Step 6. This step calls for the adoption
of controls (primary and diverse secondary) for authentication,
monitoring and inspection for every interaction of an influencing
element with the critical system element.

Decision Point: Now the results of the methodology to this
point are compared against the requirements set in Step 0. If the
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FIGURE 1. Methodology Process

requirements are met by the existing system, then the method-
ology is complete. If the requirements are not met, then the
methodology proceeds to Step 7.

Step 7: In Step 7, the system design is re-baselined based
upon the design changes proposed in Steps 4-6. This may require
subject matter expert involvement to develop sufficient models
and architectures for use in the next step. After this step, the
methodology loops back to Step 2 for re-analysis to confirm that
the system meets the zero-trust requirements.

3.1 Simple example
The simple example shown in Figure 2 can help to demon-

strate the basic flow of the proposed methodology. The first step
of the methodology is to identify in which life-cycle phases the
system in question either contains valuable information or is ca-
pable of causing harm. For this system it identifies that during
operation this is true, so the operation life-cycle phase is deemed
to be critical.

The system has a requirement of a primary and a redundant
set of controls, authentication methods, monitoring, and inspec-

tion. In the operation phase, the system has a configuration that
includes 5 components and the dependencies shown in Figure
2. Step 2 of the methodology ask for the identification of the
critical system elements. The System element C is considered
critical because it holds sensitive information and the element E
is critical because it can potentially cause harm.

The internal interfaces as well as the interfaces to the en-
vironment of element C and E are identified in Step 3, as well
as their past influences (e.g. during design, supply, deployment,
maintenance, etc.). For example for the element E interfaces to
element D and to external environment are identified. Also one
actor is identified as an influence during design, two actors dur-
ing supply and assembly and three during testing, deployment
and maintenance. All these interfaces and influences are col-
lected to a list to be used in Step 5 (interfaces) and step 6 (influ-
ences).

For additional N layers of defence-in-depth, system or envi-
ronment elements connected to the critical elements are analysed
in Step 4.N and their interfaces and influences are added to the
lists for Step 5 and 6. In this example the interfaces/influences
of element D, of the environment elements and the influences of
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FIGURE 2. Simple Example Model

element E (IdDesignA, IdSupplyChainA, etc) are also added to
the lists.

When the lists of critical interfaces and influences is com-
piled, then in Step 5 a primary and a secondary control is es-
tablished to ensure authentication, monitoring and access con-
trol/interlock. E.g. for a communication interface between an op-
erator and a drone, there needs to be a primary and a diverse sec-
ondary technology for authenticating the operator to the drone,
ways to monitor this communication and flag suspicious behav-
ior and ways to block commands that can cause harm (e.g. the
need to have the “go ahead” from a second operator and a super-
visor officer).

In Step 6 a similar process of establishing controls is focus-
ing on the influences to the critical elements. For element E 6
different actors (humans, ML tools, etc) have been identified to

have an influence during different life-cycle phases. The goal
is now to establish primary and diverse secondary methods for
authentication, monitoring and inspection of the impact of the
influence. As an example, if the element E includes software
that has been (partially) tested by a test engineer, IdTesting, then
there need to be ways to authenticate the engineer, to monitor
her interaction with the component and lastly to inspect the com-
ponent after the testing is done to confirm that it has not been
tampered with.

Now the system is evaluated to determine if it meets require-
ments or needs to be rebaselined and reanalyzed. Step 7 is acti-
vated if the system risk is not acceptable. In this case, the iden-
tified controls from Steps 5 and 6 are included and the system
re-baselined. The system is then re-evaluated.

For the interfaces/influences identified in Step 4.N (addi-
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tional layers of defence), depending of the critically of the mis-
sion of the system and the available resources, it may be justified
that not all controls are implemented.

An objective of this approach is resilience of systems con-
taining ML components for decision support and data process-
ing. If in this simple example the system element E did contain
ML technology, the proposed methodology can guide the appli-
cation of controls to prevent and mitigate security threats. Part of
the effort is placed during the influences on the ML components
but also effort is put in controlling the interfaces and interlocking
the actions that can cause harm.

4 Case Study
Consider an UAV with a sophisticated intelligence, surveil-

lance, and reconnaissance (ISR) module aboard flying a patrol
route through a mountainous area with deep valleys where re-
mote control of the system is via radio frequencies (RF). The
RF transmission can become unreliable due to mountains block-
ing RF signals, weather and other natural interference issues,
and active interference generated by an adversary. To prepare
for this, the UAV is designed to fly autonomously through ar-
eas where RF communications are unreliable using an ML com-
ponent for autonomous control. Furthermore, the ISR package
aboard is equipped with a self-destruct system to eliminate sen-
sitive components in the event of flight failure to ensure that such
components do not fall into adversarial hands. While under au-
tonomous control, an ML-controlled decision process aboard has
authority to activate the ISR self-destruct system if it detects one
or more of several events listed in Table 1 occurs. The specific
events that allow the ML to activate the ISR self-destruct system
are derived from past real-world experience and lab demonstra-
tions [8, 49–52].

TABLE 1. ISR self-destruct system events.

1 UAV is in eminent danger of crashing

2 UAV RF control has been commandeered by ad-
versary

3 UAV flight sensors (e.g.: GPS, LIDAR, etc.) are
receiving compromised data

The UAV together with the constituent ISR package form the
overall UAV system. The UAV system was designed, integrated,
and manufactured by a number of contractors and subcontrac-
tors. Each subsystem within the UAV is designed and man-
ufactured by a different subcontractor, and components within
each subsystem may further be designed and/or manufactured by
different subcontractors; thus supply-chain trust is widely dis-
tributed. Subsystems and components may be physical hardware

TABLE 2. Potential Adversary Scenarios

1 Adversary attempts to destroy UAV system

2 Adversary attempts to capture ISR package

3 Adversary attempts to destroy ISR package

4 Adversary attempts to commandeer UAV system

5 Adversary attempts to evade detection by ISR
package

6 Adversary attempts to confuse UAV operators at
FOB

7 Adversary attempts to provoke a response from
the FOB by posing as an imminent threat

or software. The ML model onboard the UAV system is trained
and tested in a virtual environment prior to deployment.

In addition to the system design considerations we also con-
sider maintenance during use. This applies to both hardware and
software. We assume that the ML model onboard the UAV sys-
tem continues to be trained during operation using successful
mission data. Adversaries may be present in the area of operation
and therefore may affect the training data (e.g. by affecting sen-
sor or traffic data, the adversary can mimic an attack of the form
in Table 2), thus hardening the model against eventual, subtle
real attacks. Furthermore, maintenance covers part replacements
that may be provided or handled by various contractors or sub-
contractors. During the repair process, such actors may also gain
access to the ML model onboard.

Figure 3 graphically shows a typical patrol route and UAV
system mission. The UAV system departs from and returns to
a forward operating base (FOB). The UAV system patrols along
several mountain valleys with the primary goal of detecting ad-
versary activity in the area using the ISR package.

While an adversary’s ultimate goal as well as attack method
may be unpredictable – even highly adaptable – several potential
scenarios have been postulated including those listed in Table 2.
Potential adversary actions have also been postulated as shown
in Table 3.

In the case study, we assume that several potential strate-
gies. Table 4 are developed and implemented to determine when
to activate the ISR self-destruct system based on the events out-
lined in Table 4. The ML-controlled decision process deter-
mines when conditions are met based on the ISR self-destruct
strategies. There are several potential outcomes of the ISR self-
destruct strategies outlined in Table 5. Replacing the ISR pack-
age in the event of an unnecessary ISR self-destruct event is
expensive and time-consuming, and the FOB commander has
a strong interest in ensuring the ISR package only is destroyed
when necessary.

Figure 4 shows a high-level system model of the UAV sys-
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FIGURE 3. Depiction of typical patrol route and mission of UAV system.

TABLE 3. Potential Adversary Actions

1 Adversary spoofs GPS signal

2 Adversary spoofs/hijacks RF comms

3 Adversary conditions ML to respond in a specific
way in order to lure ML into flying into a box
canyon

4 Adversary interferes with LIDAR sensor

5 Adversary employs anti-air defences (e.g.: flak,
missile, etc.)

6 Adversary presents multiple targets for ISR pack-
age to identify

tem. Figure 5 shows a system hierarchy diagram decomposed
into subsystems and components. Each component has an as-
sociated fault tree as shown. Each fault tree contains failure in-
formation on design, manufacturing, and operation from a Zero-
Trust perspective. The Zero-Trust fault tree graphically demon-
strates how each major phase of the system engineering process
(e.g.: conceptual design, component design, integration, man-
ufacturing, verification and validation, operation, maintenance,

TABLE 4. ISR Self-Destruct Considerations

1 Deviation from planned course

2 Loss of altitude unplanned within autonomous
control

3 Unusual C2 traffic activity

4 Unusual sensor activity (LIDAR, GPS, etc.)

5 Unusual propulsion or energy

6 Operator override

upgrade and overhaul, etc.) can be a potential source of a fault
which may cause the system to fail in operation.

For this case study, the methodology workflow starts by de-
veloping zero-trust requirements (Step 0). The requirement is
set as one layer of defense in depth. Next, Step 1 is completed
where the system life-cycle phases where there is possibility for
loss of critical information/data or for causing harm are iden-
tified. It is identified that during the mission execution phase
where during autonomous flight there is possibility to leak infor-
mation/knowledge from the ISR module.

The next step (2) is to model the UAV system in its mis-
sion operation configuration, and focus on the internal and ex-
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FIGURE 4. High-Level System Model of UAV System.

TABLE 5. ISR self-destruct outcomes.

Diag. Action Outcome

Corr.
Destroy ISR package ISR package destroyed

Retain ISR package ISR package retained

Incorr.
Retain ISR package ISR package destroyed

Destroy ISR package ISR package retained

ternal (environment) interfaces of the ISR system element (see
Figure 6). As described above, the ISR heavily relies to the
security of the drone itself (it operates in a hostile environ-
ment) as well as signal data that it receives (sensor data as well
as RF communication data flows). The ISR is a mechatronic
component that has been influenced by many actors during de-
sign/development/testing/deployment/maintenance etc. In Step
3 these interfaces and influences are identified and lists are pre-
pared for Steps 5 and 6. Figure 6 shows some examples at a high
level, but in a real application this list would be more specific and
detailed.

In this case study, one layer of defence was deemed to be
enough. However, if needed more layers can be added by fur-
ther analyzing the environment, internal system components and
actors relevant to the ISR, as described in Step 4.N (at N lev-
els of depth, depending on the additional defence layers de-
sired). I.e. here we focus only on the ISR module and its in-
terfaces/influences, but for more layers of defense we could also
investigate interfaces and influences of the components linked to

the ISR, like the power supply, frame, sensors, the systems the
ISR communicates with and the actors that influence the ISR.

Step 5 iterates through the internal and external interfaces
of the ISR and establishes primary and secondary diverse mea-
sures that ensure authentication, monitoring, and access control
to the internal information of the ISR. As an example in this
case study, given the hostile environment, many interfaces to
the environment were identified as potential carriers of security
threats. Namely, the GPS input data, the RF communications,
bad/compromised sensor inputs and physical attacks (air defence
actions). To protect against leaking the information (data as well
as IP property) part of the ISR, monitoring controls were pro-
posed to identify significant disruptions to data flow to the ISR
and the flight of the UAV. If the primary and secondary system
agree that there is a disruption that might lead to the drone be-
ing captured, then they initiate two processes to destroy the ISR
information, first a secure erase that wipes collected data and
firmware and then a physical destruction sequence that destroys
the ISR. Without both the primary and secondary systems agree-
ing, neither process takes place.

In Step 6 the influences to the ISR during its lifecycle are
evaluated and measures are deployed to authenticate, monitor
and inspect all interactions between the ISR module and different
actors involved to its life. The Zero-Trust principle mandates that
everyone who interacted with the ISR model actively (e.g. devel-
opment, testing, maintenance) or passively (e.g. transportation)
need to be assessed and controls need to be in place.

In Steps 5 and 6 there was an assessment of the redundancy
and diversity controls that are handling potential threats emerg-
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FIGURE 5. System hierarchy diagram with associated example Zero-Trust fault tree.

10 Copyright © 2021 by ASME and 
The United States Government



FIGURE 6. Zero-Trust UAV Model

ing from interfaces and influences of the ISR. Now the decision
point is reached in the method where the system is evaluated
against the requirements set in Step 0. If the controls present
were inadequate and new controls needed to be adopted, Step
7 would rebaseline the system with added controls and then the
methodology would return to Step 2. If there was no need for
redesign, then the workflow ends.

In case of budget (monetary, volume, weight) limitations,
the allocated resources for these security mitigation measures
and controls can be adjusted towards the more risky interactions,
but the Zero-Trust principle mandates that no interaction can be
trusted completely.

5 Discussion
Emerging complex systems contain advanced software com-

ponents, including ML applications like data processing and de-
cision making. This research addresses the challenge of en-

suring safety and security of such complex systems despite
the paradigm change in critical components, and opens the
door for further system design analysis and testing. The pro-
posed methodology utilized established principles of Zero-Trust,
defence-in-depth, redundancy, and diversity to guide the practi-
tioner in the analysis of the system under study. It further deploys
controls capable of mitigating or preventing loss of sensitive in-
formation and other damaging adversarial actions.

A key objective of the methodology is advance identification
of potential critical event paths emerging from a specific state of
the system or from the influences of its past, and therefore high-
light them for preemptive action. This contrasts with the often-
used practice of designing prevention and control measures af-
ter major incidents happen. The Zero-Trust principle removes
the need to rely of the knowledge of pre-existing vulnerabilities
or security shortcomings; every component is considered poten-
tially vulnerable and able to propagate attacks.
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5.1 Redundancy
Using this method in a system design process may allow for

more reliable and trustworthy systems to be rapidly deployed.
This is possible because the method helps to explicitly identify
potential issues throughout the life-cycle of a system related to
ML in a Zero-Trust paradigm. However, the method may add
expense and delay to a system design process in certain circum-
stances, and even new security considerations. For example, in
the context of a critical ML-based component, a second, inde-
pendent ML model may be trained as a redundancy check to re-
duce security risk to the overall system. The second ML model
is in turn a critical component that requires security throughout
the lifespan of the model (data aggregation through training and
use). Naturally the practitioner should apply common sense in
the application of redundancy, since additional layers can sig-
nificantly increase the number of interfaces and influences that
need to be secured. A prioritization may need to be performed,
depending on the impact of the security risk (data loss, system
damage, or mission compromise) and the available resources.

5.2 Human Element
The human element adds a layer of complexity to system

risk assessments, both from a potential adversarial perspective as
well as from risk of error. However, they can also provide redun-
dancy through a supervisory defense-in-depth approach. As with
every other component under a Zero-Trust approach, there is a
trade-off between viewing the human as a point of robustness in
the system and a point of failure.

One of the most notable aspects of comparison for ML sys-
tem components and human system components arises from the
concept of artificial intelligence as a term – namely the possi-
bility of replacing the human user entirely with the ML compo-
nent. However, even as humans are fallible, ML also introduces
a failure possibility; accuracy levels returned with an ML pre-
diction can be viewed through the lens of inaccuracy tolerance
levels in the same manner as human error. Also, as noted before
with adversarial ML, both humans and ML models are poten-
tially adversarial, even if unintentionally. The human/ML corre-
spondence is not one-to-one but rather dependent on the goals of
the system and threat model. When optimal security for the full
system is desired, using a layered human/ML approach provides
more potential defense-in-depth against individual weaknesses,
and could be considered as a redundancy check in a similar vein
to training two separate ML models.

XAI approaches [31–34] not only have the potential to im-
prove trust in the system by developing human understanding of
AI/ML outputs but also, as a consequence, improve the success
of using humans in a supervisory role. With an increased under-
standing of the system, the human is better equipped to provide
redundancy so that the ML as a human-on-the-loop regarding de-
cisions.

6 Future Work
This research does not cover the development of specific se-

curity controls, monitoring, or authentication techniques. Spe-
cific engineering domains have established redundancy solutions
that new technologies are required to provide, e.g. diversity or
redundancy to a well known security control. Concrete potential
extensions and improvements under this paradigm include the
following:

1. Future research may improve understanding of prioritization
for the interfaces and influences of the critical system ele-
ments, in order to keep a balance between security, mission
performance and resources. Potential methodology steps
can be defined to identify preventive measures or controls
that can reliably cover multiple critical components simulta-
neously. Similarly, it steps can be defined to support identi-
fication of a component open to compromise from multiple
interfaces/influences.

2. Our defense-in-depth approach can be further refined with
expanded work in XAI. As user understanding of specific
ML results within various use-cases increases, so does the
value of a human-on-the-loop. This in turn brings an overall
reduction of risk for systems supporting user input.

3. In a system of systems (SoS) context, the potential diversity
of ML across SoS that are cooperating to complete the same
mission may introduce new vulnerabilities to the SoS not
present with individual systems. A spurious system emis-
sion approach such as proposed in [3,18] may be one avenue
to address the issue of SoS with diverse ML. However, fur-
ther research specifically addressing the implications of SoS
with diverse ML should be pursued.

7 Conclusion
The proposed methodology is a first step towards the for-

malized evaluation of mission-critical systems focusing on inter-
faces and past influences based on the principle of Zero-Trust
and defence in depth. This is a lengthy process and more re-
search is required to help the assessor and the designer to re-use
past knowledge and exploit threat and design patterns. Signifi-
cant expert knowledge is required in the overall interdisciplinary
security and domain specific challenges.
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