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Abstract

As complex systems such as nuclear power plants, naval ships, critical infrastructure, and other systems become more connected
to the internet and digital control interfaces, the chance of a cyber attack causing physical damage to a system and failure of the
system increases. In many systems, recovery actions can prevent an incipient failure from causing a system-wide failure. This paper
presents a method of determining if a human operator or an automated system is more appropriate to complete a recovery action
during a cyber attack. The method is useful during the conceptual phase of system design where architecture changes have minimal
impact on the cost and schedule of the system design effort. Practitioners can use the method to make cost and probability-informed
decisions. A case study of a spent fuel cooling pool in a nuclear power plant is presented to illustrate the method.
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1. Introduction and Background

Modern systems are increasingly complex and challenging to design [1]. While the much of the system design
effort focuses on adherence to requirements, a significant portion of the of the technical effort is focused on ensuring
that the system will not fail and is safe [2]. A significant body of reliability and systems safety methods exist in
the literature and in practice where the methods tend to focus on probabilistic failures and hazards combined with
corresponding consequences [3, 2, 4, 5, 6, 7, 8]. This approach often identifies failures and hazards that have been
seen in previous system, and occasionally will creatively search for and identify new types of failures. The successful
conclusion of a reliability and system safety effort is a safe and reliable system.
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Two broad categories of recovery actions can be taken to attempt to stop an incipient fault before it has led to system
failure: automated recovery and human recovery actions [9, 10, 11]. Many legacy systems rely on human recovery
actions while systems designed in the last three decades are increasingly relying on a mix of human recovery actions
and automated recovery actions. While human operators often have a lower probability of success in completing
a recovery action, automated systems are often more expensive to implement. As a result, there exists a trade-off

between using automated systems and human operators to conduct recovery actions.
Over the last two decades, industrial and defense systems such as power grids, aircraft, nuclear reactors, factories,

and other critical systems have become increasingly connected to the internet [12]. With higher connectivity comes
greater risk of a malicious and potentially targeted cyber attack [13]. Safeguard such as air-gapped networks have
proven to not be a barrier to determined attackers [14]. While a wide range of fault and failure initiators for systems
are well understood and quantified [15], predicting the likelihood of a cyber attack and the cyber attack’s potential
outcomes remains challenging [16, 17].

Some efforts have been made to design systems using early conceptual functional flow block diagrams (FFBDs)
[18, 19] to make systems more resilient to and robust against cyber attacks [16, 20]. However, little has been done
to understand when a human operator or an automated recovery system is more appropriate to implement a recovery
action during an incipient failure event caused by a cyber attack.

1.1. Specific Contributions

This paper specifically contributes a method to aid systems engineers in assessing if a human operator or an
automated system is more appropriate to conduct a recovery action as part of an unfolding failure scenario caused by
a cyber attack. The method is suitable for the conceptual phase of system design when architectural trade-off studies
are being conducted and the cost of making significant changes to system architecture is low. The specific type of
cyber attack of interest to this paper is one that occurs during plant operation which directly affects plant operation,
such as commanding a valve to close when it should remain open.

2. Methodology

This section presents a methodology to assess if human operators or automated systems are more appropriate for
specific recovery actions that a system can take to prevent an incipient fault from causing a system-level failure. In
order to use this method, information must be available from generally comparable systems – completely novel system
designs using new architecture and new components may not benefit from this method.

A case study based on a generic nuclear power plant spent fuel cooling pool is presented to illustrate the method-
ology. Spent fuel cooling pools are used to maintain fuel temperature below the threshold for damaging the cladding
used to contain enriched uranium fuel elements after the fuel has come out of a reactor core. The fuel requires a period
of water immersion cool-down of several years before it is transferred into long-term storage [21].

2.1. Preparatory Step

Prior to using the method, a variety of models and data products of the system must be assembled. These include:
1) a FFBD system model [18], 2) a database of similar system designs with function-to-component mapping that
includes failure and prognostics and health management (PHM) [22] data [23, 24, 25, 26], 3) and an analysis of the
system using the PHM system design method based on functional modeling of a system presented by L’Her et. al. [25]
and including the function failure identification and propagation (FFIP) method of functional risk analysis [27, 28].
The family of FFIP functional failure analysis methods uses functional models and component-to-function databases
of failure information to determine the likelihood of a system failing due to a varity of initiating events both internal
and external to the system of interest. Recent FFIP developments include an expansion of the FFIP methodology
into systems of systems [29]. In L’Her et. al.’s method, a functional system architecture is first analyzed for failure
likelihood using techniques broadly similar to FFIP but with specific augmentation for failure propagation timing.
The failure information is then used to determine where PHM sensors might be installed to detect an incipient failure
while there is still time for a recovery action to be taken to get the system to a safe system state. It is important to
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Failure Scenario Chain of Events Probability of
Occurrence
(Per Year)

Heat Exchanger Motor Valve #1 Fails Closed, Heat Exchanger Motor Valve #2 Fails to Open,
Water Boils Off From Cooling Pool

2.7E-4/yr

Pump #1 Fails to Operate, Pump Valve #3 Fails Closed, Water Boils Off From Cooling Pool 5.3E-5/yr
Pump #2 Fails to Operate, Pump Valve #1 Fails Closed, Water Boils Off From Cooling Pool 5.3E-5/yr
Heat Exchanger #1 Clogs, Heat Exchanger #2 Clogs, Emergency Cooling Water Supply Ex-
hausted, Water Boils Off From Cooling Pool

1.8E-6/yr

Drain Valve Fails Open, Emergency Cooling Water Valve Fails to Open, Water Boils Off From
Cooling Pool

2.7E-7/yr

Table 1. Top five most likely failure scenarios determined Using L’Her et. al.’s method and the FFIP method of functional risk analysis

note that L’Her et. al.’s method does not include analysis of malicious cyber attacks and further does not examine if a
human operator or an automated system is more appropriate to perform the recovery action.

Fig. 1. Spent fuel pool P&ID with proposed PHM system. Three flow
meters and a depth gauge have been added to the spent fuel pool design to
monitor water moving through the system and detect potential incipient
faults. The solid lines represent piping while the dashed lines represent
data and control wiring. Dashed and dotted lines indicate data flow from
the PHM sensors to the PHM system. External cooling water is supplied
to the system from a source outside of the analysis conducted in the case
study. The digital control system is connected to the internet.

Due to space constraints, a FFBD of the spent
fuel cooling pool system is not shown here. Simi-
lar FFBDs can be seen in [25, 30]. Additionally, a
database of similar systems with requisite function-
to-component mapping including failure and PHM
data is not shown here due to space constraints.
Similar databases of function-to-component map-
ping with specific data (i.e.: reliability, mass, sus-
tainability, failure probability, etc.) can be seen in
[23, 25, 31, 32]. Analysis to design a PHM system
for the spent fuel pool cooling system was completed
including using L’Her et. al.’s method to place PHM
components, and a resulting P&ID is shown in Fig-
ure 1. A table of the top five most likely failure sce-
narios as analyzed using the FFIP method of func-
tional risk analysis is shown in Table 1. It is useful to
note that the scenarios shown in Table 1 are displayed
in a manner similar to cutsets found in probabilistic
risk assessment (PRA) [33].

2.2. Step 1: Hazard/Threat Analysis

The first step of the method is a hazard and threat
analysis of the system specifically with respect to cy-
ber attack. While there are many potential ways to
conduct such an analysis, the authors suggest using
the method O’Halloran et. al. developed to assess cy-

ber physical attacks on systems [16]. O’Halloran et. at.’s method develops the worst case scenario cyber physical
attacks via a genetic algorithm approach where the worst attacks are sought out through successive generations of
potential attacks.

Practitioners are advised to carefully inspect the list of potential hazards and down-select to the most probable or
most concerning hazards. While the O’Halloran et. al. method does produce the worst cyber physical hazards possible
for a system, it is still necessary to review the list of hazards and validate that they are possible. Further, it is important
to validate that the ”worst” hazards output by the O’Halloran et. al. method are in fact the worst for the system based
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Scenario Label Hazard Scenario
Scenario 1 Cyber Attack Disables Pumps #1 and #2, Emergency Cooling Water Tank Depleted, Water

Boils Off From Cooling Pool
Scenario 2 Cyber Attack Opens Drain Valve, Emergency Cooling Water Tank Depleted, Water Boils Off

From Cooling Pool
Scenario 3 Cyber Attack Closes Pump Valves #1 and #3, Emergency Cooling Water Tank Depleted, Water

Boils Off From Cooling Pool
Scenario 4 Cyber Attack Opens Drain Valve, Cyber Attack Prevents Emergency Cooling Water Valve

From Opening
Scenario 5 Cyber Attack Closes Heat Exchanger Valves #1 and #3, Emergency Cooling Water Tank De-

pleted, Water Boils Off From Cooling Pool
Scenario 6 Cyber Attack Disables Pumps #1 and #2, Cyber Attack Opens Drain Valve, Cyber Attack

Prevents Emergency Cooling Water Valve From Opening
Scenario 7 Cyber Attack Closes All Valves, Water Boils Off From Cooling Pool

Table 2. Spent fuel cooling pool hazard list as identified by O’Halloran et. al.’s method. A horizontal line through a hazard indicates that the hazard
has been removed from further consideration due to being ruled as invalid for further analysis.

on an analysis of the core functionality of the system [1]. The resulting list of cyber attack hazards can then be used
in the subsequent steps of this methodology.

The top seven hazards identified by O’Halloran et. al.’s method for the spent fuel pool case study are shown in
Table 2. Two of the hazards have been struck from the list after review by a system expert as being invalid due to the
digital control system segmenting valve operations in such a manner that a cyber attack is unlikely to affect multiple
valve groupings at the same time.

2.3. Step 2: Analyze Recovery Actions

The second step of the methodology analyzes potential recovery actions that can be taken to stop an incipient fault
and either place the system in a safe state or a nominal operating state. While some systems such as nuclear reactors
are designed and operated in such a way that a safe shutdown state is the objective of a recovery action [10, 3],
other systems use recovery actions to bring a system back to a nominal operating state [34, 35]. The recovery actions
developed from L’Her et. al.’s work [25] as part of the preparatory step of the method presented here is recommended
as the starting point to determine what recovery actions can be performed either by an automated system or by
humans. However, new recovery action development may be justified due to potentially new cyber attack failure
initiating events being identified in Step 1 of the method that were not assessed previously. Many methods exist to
develop appropriate recovery actions for systems such as [10, 9].

Table 4 shows how the recovery actions identified by L’her et. al.’s method map to the hazards identified from
O’Halloran et. al.’s method. Note that there are no recovery actions identified on two of the hazards from L’her et.
al.’s method due to the method truncating scenarios that were deemed to be of low probability or specific initiating
events that were not included in the analysis due to L’her et. al.’s method not assessing cyber attack initiating events.
Recovery actions shown in an italics font are those that were developed independent of L’Her et. al.’s method after the
need for a recovery action to a cyber attack was identified by O’Halloran et. al.’s method.

Specific information about potential recovery actions must be collected including: 1) specific recovery action (e.g.:
open a valve, connect a cable, etc.), 2) amount of time available to take the recovery action, 3) information relevant to
conducting human reliability analysis (HRA) [10, 36, 37] on the recovery action, 4) information relevant to developing
an automated system to conduct the recovery action. Next, a HRA and an analysis of an automated recovery system
for each specific recovery action can be conducted to determine the following information: 1) probability of success
or failure of the recovery action, 2) cost of implementing the recovery action, and 3) cost of a cyber attack succeeding
and causing system failure.
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2.4. Step 3: Trade-off Study Between Automated and Human Recovery Actions

The third step of the method develops a trade-off study between automated and human recovery actions. In order
to make decisions more easily, the authors advocate placing all decision-making criteria into the cost domain. The
decision-making criteria are based on several factors including the following:

2.4.1. Probability of Successful Recovery
This factor addresses the chance that a recovery will be successful. Three broad categories of input are considered

to achieve the final probability. Specifically, the probability of a recovery action being successful, PRS , is the math-
ematical product of the probability of detecting that a malicious act has occurred, PDMA, the probability of correctly
identifying the recovery action to be taken, PIRA, and the probability that the recovery action is successful, PRAS , as
shown in Equation 1. These values are assigned independently for each malicious act and separately for human op-
erators and automated systems. HRA methods follow the basic outline described above to determine human operator
probability of successfully completing a recovery action. Cheung et al., presents research on the automated detection
of systems, which can be used to inform the probability of detecting that a malicious act has occurred [38].

PRS = PDMA ∗ PIRA ∗ PRAS (1)

Similar techniques are used to determine the probability of an automated system completing a recovery action
although with focus on understanding the ability of a system to use its PHM system to detect the malicious act and
determine the correct recovery action [39, 20].

2.4.2. Recovery Action Cost
The cost to implement a human operator recovery action versus an autonomous system recovery is a critical factor

in determining which is optimal. This factor estimates the cost of each independently. Recovery action cost values
should estimated on an equivalent timescale basis for accurate comparison (e.g.: yearly, weekly, etc.). In this paper,
the authors use an annual cost basis.

Practitioners are advised to determine recovery action costs that are appropriate for their specific systems. Nuclear
power plants often have higher recovery action costs than water treatment plants, for instance. Regardless of the sys-
tem being investigated, it is important to capture the entire cost of a recovery action including but not limited to the
following factors: 1) fully burdened salary of operators, maintenance personnel, and other people involved with the
recovery action or with maintaining the automated recovery system (COS THumans), 2) cost of all equipment and hard-
ware both for automated recovery systems and for human-operated recovery systems (COS TEquip), 3) maintenance
costs not already captured (COS TMaint), 4) in specific circumstances, residual costs associated with a recovery action
(COS TRes) such as in the case of emergency neutron poisoning in a nuclear reactor to quench the fissile reaction [40],
and 5) any other cost factors identified by the practitioner (COS TOther). Equation 2 demonstrates how the cost factors
are combined into a recovery action cost (COS TRecovery).

COS TRecovery = COS THumans + COS TEquip + COS TMaint + COS TRes + COS TOther (2)

2.4.3. Successful Attack Costs
The cost of a successful cyber attack is important to the evaluation of the trade-off between human operators and

autonomous systems being used to conduct recovery actions. If the cost of a successful cyber attack is very high, this
may indicate that a more expensive but more likely to succeed recovery action is justified. However, if the cost of a
successful cyber attack is low, a less reliable recovery action may be more cost effective.

Measuring the cost of a successful cyber attack can consider but is not limited to: 1) the cost of repairing the
system (COS TRepair, 2) the cost of system downtime (COS TDowntime), 3) the cost of remediation of any negative con-
sequences of the system failure such as toxic chemical release, radiological release, damage to nearby infrastructure,
etc.(COS TRemediation), and 4) any other identifiable costs(COS TOtherS ucc). The authors recommend tracking each of
these costs separately but using a total cost of successful attack (COS TS uccAtt) in the next step. Equation 3 shows how
to calculate the cost of a successful attack. Table 3 shows the results of the analysis of the recovery actions for both
human operators and automated systems.

COS TS uccAtt = COS TRepair + COS TDowntime + COS TRemediation + COS TOtherS ucc (3)
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Recovery Action Human / Automation Probability of Re-
covery Success

Recovery
Action Cost

Successful
Attack Cost

Recovery 1 Human Operator 0.85 $0.5M/yr $10M
Automated System 0.78 $1.2M/yr $10M

Recovery 2 Human Operator 0.52 $2.1M/yr $12M
Automated System 0.85 $2.7M/yr $12M

Recovery 3 Human Operator 0.92 $0.75M/yr $15M
Automated System 0.95 $0.5M/yr $15M

Recovery 4 Human Operator 0.7 $1.2M $9M
Automated System 0.82 $1.4M $9M

Recovery 5 Human Operator 0.87 $0.6M $17M
Automated System 0.75 $0.3M $17M

Table 3. Results of analysis of recovery actions performed by either human operators or automated systems. Costs are on a yearly basis.

2.5. Step 4: Recovery Decision-Making

With the information developed in the previous three steps, decisions can now be made between a human operator
or an automated system being used to complete a recovery action. As was stated in Step 3, using a cost basis to make
decisions can help to make decisions more easily. A risk number, where risk is defined as the probability of an event
occurring multiplied by the outcome of the event, can be developed to represent both the case where a system is
successfully recovered from a cyber attack (RN−S uccess), shown in Equation 4, and the case where a system fails due
to a cyber attack (RN−Failure), shown in Equation 5 . It should be noted that the method presented in this paper does
not assign a probability to cyber attacks either individually or as a category of initiating events. This is intentional
and represents the current state of knowledge over the likelihood of cyber attacks in the future. Predicting zero-day
exploits is notoriously difficult [41].

RN−S uccess = COS TRecovery ∗ PRS (4)

RN−Failure = (COS TRecovery + COS TS uccAtt) ∗ (1 − PRS ) (5)

The risk associated with both outcomes (RN−Rec−Outs) can then be added together to develop a risk of the choice of
either having a human operator or an automated system attempt the recovery action, shown in Equation 6.

RN−Rec−Outs = RN−S uccess + RN−Failure (6)

A decision-maker can now analyze the risk numbers for each recovery action to determine if a human operator or an
automated system is more appropriate. In the case where a the architecture of a system is still in flux, it may be useful
to broadly evaluate if a system is better served by having recovery actions performed entirely by automated systems
or human operators. To make this determination, the risk numbers of all human operator recovery actions are added
together and the risk numbers of all automated system recovery actions are separately added together (RN−Humans

and RN−Automation), then the two summed risk numbers are compared to see which is lower – the lower risk number
indicates that it is the better choice, as shown in Equations 7 and 8.∑

RN−Rec−OutsHuman = RN−Human (7)∑
RN−Rec−OutsAutomation = RN−Automation (8)

Table 5 shows the risk numbers for each recovery action. Decisions for each recovery action where the choice is
either a human operator or an automated system are listed. The bottom of the table shows the summed risk numbers
for all recovery actions being taken by human operators versus all recovery actions being taken by automated systems.
If the architecture of the case study system were still in flux, the values of RN−Humans and RN−Automation indicate that
using automation across all recovery actions is a lower overall risk.
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Recovery Action Hazard Scenario Recovery Action Description
Recovery 1 Scenario 1 Pump Control Override to Restart Pumps
Recovery 2 Scenario 2 Install and Turn On Pump Between Drain Tank and Cooling Pool to Re-

cycle Water
Recovery 3 Scenario 3 Install and Open Backup Pump Valves #1 and #3
Recovery 4 Scenario 4 Install and Turn On Pump Between External Water Source and Emer-

gency Cooling Water Tank
Recovery 5 Scenario 5 Install and Turn On Fire Water Source to Replenish Cooling Pool

Table 4. Specific recovery actions that can be taken to stop incipient failures caused by cyber attacks. Recovery actions in italics font indicate that
they were not previously identified by L’her et. al.’s method.

3. Discussion and Future Work

Recovery Action RN−Rec−OutsHuman RN−Rec−OutsAutomation Decision
Recovery 1 2 3.4 Human
Recovery 2 7.86 4.5 Automation
Recovery 3 1.95 1.25 Automation
Recovery 4 3.9 3.02 Automation
Recovery 5 2.81 4.55 Human

Summation
RN−Automation 16.72

RN−Human 18.52

Table 5. Summary table of risk numbers. Units are probability ∗Cost($)/1E6.

While other methods such as L’Her
et. al. [25] can aid in designing a PHM
system, the method presented here is
specifically useful in determining if a
human operator or an automated sys-
tem should be used to perform a re-
covery action during a cyber attack-
initiated incipient failure. As noted
elsewhere in this paper, the probability
of a cyber attack is not part of the as-
sessment of the method due to the in-
ability of a cyber attack to be assigned
a probability, especially over signifi-
cant lengths of time. This limitation may be corrected in the future if a satisfactory means of predicting cyber attack
frequency is developed.

In some cases, such as when loss of life may be involved or other very bad outcomes of a successful cyber attack
are possible, it may be useful to use a weighted method of decision-making. Van Bossuyt et. al. [42], Van Bossuyt et.
al. [43], and Van Bossuyt et. al. [44] provide several related methods for weighting significant outcomes using utility
theory and other techniques. This is especially important in situations where the entire cost of a successful cyber attack
may not be fully calculable.

Uncertainty in the data sources may cause decisions between human and automated recovery actions to not be as
clear-cut as the above case study shows. Uncertainty may come from probability of recovery success, recovery action
cost, and successful attack cost. The authors suggest practitioners attempt to decrease uncertainty through refining the
variables with the largest impact on uncertainty in the model until a clear decision has been identify.

While cyber attack risks to operating plans has received a great deal of attention and are the focus of this work, the
entire systems engineering process is vulnerable. For instance, malicious code could be inserted into critical software
repositories, configuration datasets could be changed, electronic records and logbooks could be altered, a plant’s
design baseline could be doctored, inventory control systems could be changed, regulatory compliance documents
could be altered, and even system reference models during the design process could be tampered with. Although the
method and case study presented below intentionally only addresses a small subset of potential cyber attacks during
system operation, the authors caution practitioners to remember the entire lifecycle of the system may be attacked.

The case study presented above is of a small subsystem within a larger system. Analysis of a large system or
a system of systems using the method presented in this paper may result in interesting conclusions such as human
operators being preferred at a subsystem level but automation being preferred at a system or system of systems level.
The authors recommend evaluating at the highest level practical.

One potential outcome of using this method may be to redesign a system to have a longer period of time available
to complete a recovery action. This often will lead to an increase in the probability of a human operator successfully
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completing recovery actions which may help to lower costs in cases where human operators are less expensive than
automation systems. This may also allow for sufficient time for human operators to double check automation system
performance to prevent a cyber attack from succeeding at causing the system to fail.

In the future, an extension of this method may be made to more closely analyze staffing levels within a system to
provide a more nuanced cost basis for human operators. Currently the method assumes that one operator will only
perform one recovery action. However, a single human operator may be in charge of multiple recovery actions or
several human operators might be needed to accomplish one recovery action.

The method may be extensible to represent more complex recovery efforts where human operators and automated
recovery systems work together. This may result in a wide range of potential choices between entirely human operator
and entirely automated system-driven recovery. Other strategies such as human operators and automation systems
backstopping each other may also provide fruitful for future research.

Another future expansion of the work is to develop an ability to better understand how cyber attacks may interfere
with recovery actions. For instance, a cyber attack may disable digital display panels or may even spoof the digital
display panels [14], thus making a human operator’s job of successfully identifying an incipient failure and diagnosing
the failure less likely. A cyber attack may simultaneously target both the control system and the automated recovery
system which may both initiate an incipient failure and allow the incipient failure to result in a system-level failure
due to the automated recovery system being rendered ineffective.

4. Conclusion

The method presented in this paper provides a means for assessing if a human operator or an automated system is
more appropriate as the actor in a recovery action in a cyber attack scenario on a physical system. By being positioned
for use during the conceptual phase of systems design when architectural trade-off studies are being conducted and
the cost of making significant changes to a system are low, this method allows systems engineers to make informed
recovery action decisions. Practitioners can use this method to make cost and probability-informed decisions that
otherwise would not be possible during conceptual design.
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