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Abstract

In recent years there has been increased demand for readiness and availabilitymetrics

across many industries and especially in national defense to enable data-driven deci-

sion making at all levels of planning, maintenance, and operations, and in leveraging

integrated models that inform stakeholders of current operational system health and

performancemetrics. The digital twin (DT) has been identified as a promising approach

for deploying thesemodels to fielded systems although several challenges exist inwide

adoption and implementation. Two challenges examined in this article are that the

nature of DT development is a system-specific endeavor, and the development is usu-

ally an additional effort that begins after initial system fielding. A fundamental chal-

lengewith DT development, which sets it apart from traditional models, is the DT itself

is treated as a separate system, and therefore thephysical asset/DT construct becomes

a system-of-systems problem. This article explores how objectives in DT development

align with those of model-based systems engineering (MBSE), and how theMBSE pro-

cess can answer questions necessary to define theDT. The keybenefits to the approach

are leveragingwork already being performed during system synthesis andDTdevelop-

ment is pushed earlier in a system’s lifecycle. This article contributes to the definition

and development processes for DTs by proposing a DT development model and path, a

method for scoping and defining requirements for a DT, and an approach to integrate

DT and system development. An example case study of a Naval unmanned system is

presented to illustrate the contributions.
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1 INTRODUCTION

Today there is a significant investment into making systems and sys-

tems of systems smarter to better aid stakeholders in the operations of

equipment to improve performance or readiness. In industry, the inter-

net of things (IOT), and user intuitive displays make system interaction

and decision making far better than in the past. Today, early in a sys-

tem’s acquisition, stakeholders invest in models that aid in communi-
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cation across stakeholders; many acquisition programs undergo some

form of model-based systems engineering (MBSE) to aid in the system

synthesis process.

One of the primary tenets of MBSE is the concept of system reuse

throughout the system’s lifecycle. Today the emergence of the digi-

tal twin (DT) as an analytics framework provides new opportunities

to operationalize early investments in system models to perform anal-

ysis on the physical asset once fielded. Additionally, by leveraging
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F IGURE 1 DoD digital engineering
strategy—integration of models1

early MBSE efforts to define the DT, analytic processes used to ver-

ify system requirements and early conceptual designs can aid in the

verification that fielded assets continue to meet mission objectives,

or trigger user intervention when the DT predicts the system will

not. In effect, an integrated modeling environment using MBSE can

become the DT of the asset if that type of performance analysis is

desired.

As a result DTs can be fielded much earlier in a program’s lifecycle,

which may have a larger net improvement on readiness, while simul-

taneously reducing the DT’s development cost by taking advantage of

modeling and stakeholder insights that define the physical asset itself.

This concept ties in well with the digital transformation efforts many

companies and government agencies are currently pursuing, notably

by arming stakeholders across all aspects of the development, opera-

tions, and support with intuitive and common data sets to drive better

decisionmaking.

One final thought for consideration, is by pursuing a robust systems

engineering approach to developing a DT, that twin itself is treated

as a separate system, and therefore the physical asset/DT construct

becomes a system of systems problem. This opens up a new paradigm

of integrated system design andmodeling.

1.1 Digital transformation

Both the Department of the Navy (DoN) and industry are making sig-

nificant investments in digital transformations to better incorporate

data-driven decisions into every aspect of business operations and sys-

tem lifecycles. In 2018, the Department of Defense (DoD) released the

DoD Digital Engineering Strategy with objectives including formaliz-

ing the development, integration, and use of models to inform enter-

prise and program decision making.1 One critical element in the DoD

Digital Engineering Strategy is the leveraging of various system mod-

els throughout the lifecycle, shown in Figure 1, to aid in better decision

making. For the DoN, the emergence of MBSE and model-based prod-

uct support (MBPS) provide a technical framework of integrated mod-

els to achieve these goals. The current focusondigital transformation is

a key concept for this article—everything stated as objectives in digital

transformation publications are also key objectives in the use ofMBSE

togenerateDTs. This article, and its contributions to theuseofMBSE to

drive DT development to enable condition-based maintenance (CBM),

directly support the DoDDigital Engineering Strategy.

1.2 CBM

One significant improvement to the operations and sustainment of

fielded systems is the application of CBM—a strategy strengthened

by modern electronics and computing systems and which will sup-

port the aforementioned DoD Digital Engineering Strategy. There are

strong motivations to transition from time-based maintenance (TBM)

to CBM2–4 and leverage system modeling to drive data-driven deci-

sions throughout a product’s lifecycle. DTs are widely discussed as

a natural framework for tracking and reporting a system’s physical

condition, and employing predictive analytics, prognostics and health

management (PHM), and performance analysis tools for a deployed

asset.5–7 This article will explore alignment with the systems engineer-

ing requirements decomposition process and the implementation of a

DT to inform stakeholders of the physical asset’s health and perfor-

mancemetrics, and drive a CBM strategy.
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F IGURE 2 Digital twin concept of operations (CONOPS)

1.3 DT overview

DTs are getting significant attention in both academia and industry.

Gartner has identified the DT as a top 10 strategic technology for

2017,8 2018,9 and 2019.10 In the 2018 report, Gartner states: “A [DT]

refers to the digital representation of a real-world entity or system.”

The National Aeronautics and Space Administration (NASA) provides

a more detailed and technical definition. In 2012, NASA defined a DT

as an “integratedmultiphysics,multiscale, probabilistic simulationof an

as-built vehicle or system that uses the best available physical models,

sensor updates, fleet history, etc.”11 Since a DT is the virtual represen-

tation of a physical asset, it makes sense that there are varying defini-

tions, because different stakeholders have different interests in their

DT. A reliability engineermay prioritize reliability tracking. A naval offi-

cer may care about performance predictions. An acquisition program

manager may care about cost and financial insights from the DT. To put

it simply, the authors propose that in general terms, a DT is a model

that helps stakeholders answer specific questions by providing a read-

ily available rapidly testable digital analog to the system of interest.

In 2018, Gartner stated: “Organizations will implement DTs sim-

ply at first. They will evolve them over time, improving their ability

to collect and visualize the right data, apply the right analytics and

rules, and respond effectively to business objectives.” The second point

that DTs will be simple at first but will incrementally evolve is a natu-

ral approach given two primary considerations: (1) the cost and com-

plexity of designing and implementing a DT can be cumbersome5 and

expensive, which limits their development, and (2) stakeholders may

not know exactly what answers they will need from their DT. Develop-

ing a DT for a fielded system requires vision, expertise, and a systems

engineeringmethodology.

There are many types of DTs outlined in Section 2.5 but for this

article, the authors will emphasize one of the more complicated use

cases: leveraging DTs for prognostics and health monitoring. The gen-

eralized concept of operations (CONOPS) for a PHM-centric DT can

be found in Figure 2. The DT is connected and operates in parallel to

the physical asset. The physical asset provides sensor data, usage data,

and environmental data to theDTwhich then assists withmaintenance

planning, provides tactical decision aids, and generates health and

reliability metrics. The outputs of this DT are leveraged by MBPS to

deploy proactive parts supply and training to resolve issues due to the

actual systems condition.

1.4 Today’s maintenance problem

Today, many assets are maintained via TBM practices.12 In the Navy,

preventive maintenance is often employed using a reliability-centered

maintenance (RCM) philosophy per the Reliability-Centered Mainte-

nance Handbook.2 The problem with planning and scheduling main-

tenance based on clock or calendar time is it is inherently inefficient.

There are environmental and operational factors that influence the

requiredmaintenance periodicity andwhenmaintenance is performed



4 BICKFORD ET AL.

purely off calendar time, those factors are not taken into account and

maintenance may not be performed when actually needed. Addition-

ally, preventivemaintenance periodicity is often defined by recommen-

dations from the system designer and this practice is not applicable

when stakeholder’s primary objective is minimizing cost or maximizing

performance.13 This is not a new challenge; one study of machinery in

anautomobile factory found that overall systemeffectiveness canbeas

lowas55%due tomaintenance cycles.14 This demonstrates clear value

in optimizing maintenance periodicity. A poorly balanced maintenance

frequency results in both reduced availability14 and affordability.15

With a TBM philosophy, devices are either overmaintained or

undermaintained, potentially leading to inappropriate levels of down-

time. Many less common failure modes are experienced with failure-

driven models (FDMs) and components are operated until the point

of failure—resulting in downtime due to unexpected failures.16 In a

risk-adverse community there can be a bias toward over maintenance,

which is only made worse without strong data driving maintenance.17

Today’s rapid evolution in technology and increasing system complexi-

ties makes smarter maintenance a necessity. The net impact of under-

or overperformed maintenance is a degradation of availability, cost, or

both. This challenge has been observed for many years; in 1990Wire-

man analyzed maintenance trends back to 1979 and found that main-

tenance duration trends have risen by 10% to 15% per year.18

To explore the interest in industry and defense2 to transition from

TBM to CBM, it is worthwhile to look at the benefits of CBM and

weaknesses in a TBM strategy. For industry, there are profits to make;

for defense, arguments can be made for either economic or opera-

tional capability. The following factors demonstrate how maintenance

performed before or after the required maintenance action result in

inefficiency.

1. If maintenance is performed prior to an ideal point in time, main-

tenance is overperformed and there is a resulting net waste in the

total labor and consumables. In a reduced manning environment,

this puts a tax on the maintenance crews. In an autonomous envi-

ronment, the device may be pulled offline prior to a critical mission

or at an unnecessarily high frequency for service, which in effect,

either reduces the number of operational days for each unit, or

increases the number of spare units required to support a task.

2. If maintenance is performed after the optimal point, maintenance is

underperformed and components can degrade at a higher rate, the

number of unexpected failures naturally rises due to fewer inspec-

tion periods. Unexpected failures may bring the system offline in a

time-sensitive period, and in the case of autonomous operations it

may lead to complete loss of a system.

3. If maintenance is driven by embedded sensors passing data

to stakeholders, maintenance can be performed precisely when

needed—minimizing downtime, excess consumable usage, andmin-

imized component wear.

An additional challenge that exists with a TBMprogram is if mainte-

nance is not performed, there may not be objective quality evidence

reporting maintenance was not performed. One notable and signifi-

cant example of this was Alaska Airlines Flight 261, in which it was

found that insufficient lubrication led to the crash, after an investiga-

tion found awide range of human, technical, and organizational factors

contributed to theevent.19,20 UnderaCBMphilosophy, embeddedsen-

sors can mitigate risk due to human error since sensors monitor sys-

tem health and provide additional confidence that the system is well

equipped to support themission.

One final challenge with TBM for consideration is there are strong

motivations to leverage autonomous vehicles both to reduce oper-

ational costs21 and improve operational flexibility and agility.22 The

operations and scheduling of these assets is complex, as is their likeli-

hood of failure or loss23 so having a strong understanding of readiness

andmaintenance required is even higher for these types of assets.

The discussion of TBM versus CBM is very well alignedwith the dis-

cussion surrounding DTwithin this article, in alignment with the previ-

ous generalized definition for DTs from Section 1.3. The existence of a

readily available rapidly testable digital analog to the system of inter-

est provides infrastructure for the analysis of various data for decision

making. In this case, maintenance data can be monitored and corre-

lated to a desired outcome, and the aggregation andoutput of this anal-

ysis provides objective, quality evidence that status is understood and

operations are proceeding as expected and intended. In effect, the DT

collecting the necessary data provides confidence that the system will

support themission in question.

1.5 Barriers to DT adoption

In some fields, notably the manufacturing sector, there is a significant

amount of research covering use cases and return on investment of

DT for remote diagnostics employment.24,25 Unfortunately as with the

adoption of a new and novel concept, the development time and costs

associated with building a DT make it a difficult undertaking for many

organizations. Often publications ignore the cost of DT development

as a barrier. Implementation of a DT may be difficult; the cost of a DT

may be extremely high or cost prohibitive.26 In a large program such as

theF35Lightning, the relative investment cost in theDTmayhaveposi-

tive returnon investmentdue toawidely fieldedpopulationof systems,

or a significant cost of operations andmaintenance.5 In the experience

of the authors, many programs with low populations of fielded assets

such as the Navy, the DT development cost barrier may seem insur-

mountable. Furthermore, there are only a handful of instances where

DTs have successfully been incorporated into the fielding strategy,24

and the prospective confidence in positive return on investment is hard

to quantify.

One major barrier to the employment of DTs is the process for

building or implementing them is a very use-case–specific endeavor, so

exploration of the academic literature yields very few resources that

provide interested stakeholders with a repeatable and generalizable

process or strategy for employment. DTs in the literature often cover

systems that are already in their operations andmaintenance phase, so

the development is entirely an after-deployment consideration.27 This

ad hoc nature presents engineers and data scientists with challenges in
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the lack of a common process for defining requirements for the DT, an

unclear path for development, and a steep learning curve for the early

stages of implementation. The result of theprevious factors is a highDT

development cost, and risk that the DT will not have the appropriate

functionality to maximize utility to its stakeholders. This results in an

overall cost/risk pair that will dissuade many sponsors—especially for

programs such as accelerated acquisition or developmental programs.

1.6 The case for developing a DT during system
architecture

Currently many Fleet systems follow a RCM model in which many

maintenance actions, notably for hidden failures in which there is no

noticeable symptom, are planned and scheduled based on the relia-

bility of components within the system.28 Given the randomness of

many failure modes, TBM is inherently inefficient;16 many mainte-

nance actions are performed before they are truly required—notably

in risk adverse communities17 such as theDoD, resulting inmoremain-

tenance labor than required and increased consumable use. Further-

more, when failures are experienced, corrective action time initiates

after the incident resulting in unplanned downtime that can have a sig-

nificant detrimental effect on business or operations.5,29

Often when dealing with internationally distributed systems, the

logistics delay times of getting parts to the end-user can take days

or weeks. In this environment, PHM tools that can predict such fail-

ures, then schedule andprioritizemaintenancewhen it does not impact

operation of the system is enormously beneficial to stakeholders.

Human capital often ends up being one of themost expensive parts of a

business and as a result, many communities are trying to minimize the

number of people in the loop,30 and increase the use of data, analyt-

ics, and planning in support models. In the Navy, this is reflected in the

Littoral Combat Ship (LCS) community, which has dramatically fewer

sailors onboard than would normally be the case.31,32 In this environ-

ment, unnecessary or inefficient preventive maintenance puts a toll on

systemmaintainers, creating even more demand for analytics aiding in

maintenance analysis and scheduling.

A DT focused on supporting maintenance, failure predictions, and

monitoring systemhealth is effectively amodel with integration to sys-

tem sensors that provide stakeholders with automatic collection and

analysis of data to provide PHM insights. “The goal of PHM is to allow

systems operators to catch incipient failures early enough to be able

to prevent or correct them.”.33 Employment of PHM sensors early in

a system’s design can effectively reduce the likelihood of failure of

a component,33 so by initiating the scoping efforts of the DT during

early system requirements decomposition has the highest return on

investment:

1. DT development is efficient because many of the questions that

drive system synthesis as part of an MBSE approach also establish

objectives or requirements for the DT.

2. DT development can play an early role in identifying failure modes,

symptoms, and resulting impacts, reducing long-term reliability

concerns.

3. DT development early in a program’s design arms PHM teams with

early recommendations of the types, quantities, and locations of

sensors that will aid the DT’s health monitoring of the physical sys-

tem For the use case of this article, the authors will explore the

operational impacts of deploying a DT for an unmanned system. In

theworld of autonomous systems, there are not onboard users that

can assist with overcoming issues once a casualty is experienced.

Deployed autonomous systems may even be completely lost under

certain circumstances, resulting in an extremely high cost associ-

ated with the failure. Failure tolerance is lowest due to the impact.

Due to these factors, it is even more critical to perform necessary

actions before failures, which then drives up the preventivemainte-

nance frequency, further driving increased inefficiency.

In addition to development cost and timeline, there are other strong

reasons to begin DT development during system design. In addition to

the DT, infrastructure and tools to analyze the data are also required.

Within the physical asset, implementation of a DT may necessitate

additional data storage for data logging, additional processing to per-

form any edge analysis that is required, a data transport mechanism to

get the data to end users, and the end-user processing hardware, soft-

ware, and tools necessary to interpret the results.

DT-driven requirements within the physical asset are very impor-

tant considerations,whichhighlights theefficiency gainedbyarchitect-

ing and designing the DT in parallel. In the DT literature, DTs are either

built off of the current capabilities that exist in the fielded system, or

additional sources of data (sensors) are added to the system. In the first

case, the DT is limited in capability to the analysis of data sources that

were predicted as a required or valuable data source during design.

Accordingly the full capability of aDTmaynot be realized due to design

constraints. In the second case sensors are added to the device after

the system is fielded. This results in inefficiencies due to the added

steps of installing and integrating those sensors, and in many cases the

postfielding sensors are not as well integrated as those in the original

design. These reasons are part of our motivations to develop a process

that is intuitive that will aid in systems engineers in the architecting of

the twin as thephysical asset is designed. Finally, in government organi-

zations, the costs associatedwith engineering changes postfielding can

be significant, so there is a strong motivation within the navy to build

and integrate the DT concurrently with the system of interest.

1.7 Specific contributions

One challenge in the field of DTs is there is no standard process for

implementing a DT. This article contributes to the definition and devel-

opment processes for DTs by proposing a DT development model

and path. This article specifically proposes a solution for scoping and

defining the requirements for a DT, as well as guiding system experts

through the process of architecting the DT by leveraging the tradi-

tional systems engineering efforts already integral to developmental

and acquisition programs. The result of this method is a DT devel-

opment process that is intuitive to systems engineers and requires
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F IGURE 3 Relationship ofMBSE, FE, and physics-basedmodels to DT development

lower systems engineering or developer time investment than if aDT is

developed as a separate activity postfielding. Specifically, this process

leverages the requirements development and verification processes to

guide the development of a DT, which is then employed to aid through-

out themaintenance phase. Finally, this article explores how the notion

of DTs fits in with the field of systems engineering, and describes how

a systems engineering approach to defining and fielding a system can

also aid in the development of the DT.

2 BACKGROUND AND RELATED RESEARCH

There are five primary related research areas that are necessary to

be understood for the purpose of this article. These research areas

include: systems engineering, MBSE, DTs, PHM, and computer-based

modeling including finite element (FE) modeling and physics-based

modeling.MBSEprovides a natural framework for developing aDT. The

developedDT is the foundation for implementing PHMalgorithms that

will enable performing CBM.

2.1 Systems engineering

The systems engineering process leveraged throughout system design

is a very well understood process with decades of research and

methodology developed.34 While this article will not speak directly to

a specific systems engineering methodology beyondMBSE, it is impor-

tant to note that the majority of systems engineering processes have

the same fundamental stages for system design: requirements analy-

sis, system specification development, system design, implementation,

test, and operations/maintenance. This article emphasizes opportuni-

ties to align the development of aDTwith the systems engineering pro-

cess up-front in a programs lifecycle.

Integration of modeling and simulation to answer questions

throughout the design process is commonplace. Figure 3 outlines the

generic systems engineering process, various tools available to prac-

titioners, and the relationship with DT development. There are two

notable considerations of the systems engineering process that will

be covered in more depth due to their significant contributions to the

DT concept: system architecture definition and stakeholder require-

ment decomposition.

2.2 MBSE

MBSE is a field of study within systems engineering focused on the

execution of the generic process outlined earlier (requirements devel-

opment, system design, implementation, test, and operations) within a

model-based environment. MBSE is generally described as a method-

ology used by system architects and technical leadership to aid them

in the requirements generation and validation process, system syn-

thesis, and system verification. The International Council on Systems

Engineering (INCOSE) defines MBSE as “the formalized application

of modelling to support system requirements, design, analysis, veri-

fication and validation activities beginning in the conceptual design

phase and continuing throughout development and later life cycle

phases.”

The use ofmodeling and simulations to aid in system design is a very

well-understood concept with numerous publications and instances of

use in industry. In 1990 INCOSE was founded and has the vision of “a

better world through a systems approach.”.35 Today in the DoD, the

majority of programs undergo some form of systems engineering, and

MBSE is becoming increasingly common.

One critical aspect of MBSE ideology is the transition from

a document-based acquisition to coherent modeling of a system

to describe and communicate among stakeholders. This approach

“enhances specification and design quality, reuse of system specifica-

tions and design artifacts, and communications among the develop-

ment team.”.36 The idea of model reuse is the fundamental goal in the

vision for fielding low-cost DTs to aid decision making, something that

is consistent with the goals and objectives of modern DoD acquisition

and engineering policies.
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In practice today, MBSE is most commonly found in the first appli-

cation, notably after 2003 with DoD Directive 5000.01, and 5000.02

establishes DoD policy that includes systems engineering. The 2003

version of DODD5000.01 states “[a]cquisition programs shall beman-

aged through the application of a systems engineering approach that

optimizes total system performance and minimizes total ownership

costs.”.37 Due to this instruction, the use ofMBSE is commonly used as

the formal process used to decompose stakeholder top-level require-

ments to subsystem requirements for defense acquisition systems.

One MBSE survey38 shows that the majority of MBSE processes

discussed are specific to the system synthesis process—notable is the

use through requirements analysis and decomposition. While DODD

5000.01, INCOSE, and many other sources state MBSE is applicable

to the full lifecycle of a system, there are very few publications on

howMBSE can be used for sustainment. Given that one of the primary

objectives of MBSE is to analyze performance and reliability, one can

safely conclude that theuseof integratedmodels that aiddecisionmak-

ers in the analysis of a system of interest’s health and performance is

an MBSE application. For the sake of this article our MBSE application

is the use of this DT to analyze a live system’s performance, reliabil-

ity, suitability, remaining usable life, or other factors that stakeholders

would deem necessary during initial system fielding.

MBSE is defined by INCOSE as “the formalized application of mod-

elling to support systems engineering beginning in the conceptual

design phase and continuing throughout development and later life

cycle phases.”.39 In 2007, INCOSE expanded on this definition in their

vision for 2020 by describing specific applicable systems engineering

disciplines, statingMBSE is “the formalized application of modelling to

support system requirements, design, analysis, verification and valida-

tion activities beginning in the conceptual design phase and continuing

throughout development and later life cycle phases.”.40,41

In line with these definition, there are three applications of MBSE

that align strongly with the vision of building a DT in parallel to the

physical system:

1. The use of modeling to aid in system requirements definition and

decomposition.

2. The use of models to assist with analysis to demonstrate a chosen

conceptual design will meet the necessary requirements.

3. The use of systemmodels throughout a product’s lifecycle, notably

to assess system health, reliability, maintainability, supportability,

and fielded performance.

There are many different methodologies and tools currently in use

to implement MBSE.38,42–45 In the survey produced by Lu, he states

SysML is one of the most common MBSE languages. From an archi-

tectural perspective, the different systemmodeling languages (SysML,

UML, LML, and others) are general modeling languages. Huynh states

that “a general-purpose modelling language for systems engineering,

SysML is effective in specifying requirements, system structure, func-

tional behavior, and allocations during specification and design phases

of systems engineering.”.45 With respect to DT, all of the objectives

and outputs from the different MBSE languages offer insights that will

drive the definition and architecture of a DT. Given the fact that these

languages all support the objectives for driving DT development, this

article intentionally does not select or endorse one specific language,

tool, ontology, or process because it is up to MBSE practitioners to

select those tools that meet their specific requirements. Part of the

value in this methodology is the broad applicability to diverse types

of projects.

The critical element of MBSE with respect to a DT is the nature of

a DT and is the merging of various models to answer specific ques-

tions. MBSE establishes a set of standards and an underlying ontol-

ogy, which can be adapted to an appropriate architectural framework

that guides the development of a DT. In some instances, early MBSE

models can evolve and expand over time, increasing in fidelity to the

point where they can become part of the DT. There have been sev-

eral demonstrations in the literature that MBSE modeling efforts can

evolve beyond traditional UML, SysML, or LML. System modeling lan-

guages have beendemonstrated to integratewithMATLABSimulink to

perform CPU processor performance assessments of different archi-

tectures in support of chip design,46 MATLAB for assessing perfor-

mance of bio implants,47 DEVSys for discrete event simulations,48 as

well as ExtendSim, SimPy, AnyLogic, NetLogo.49 MBSE system model-

ing languages have also been successfully leveraged for use in agency

modeling.50 These examples demonstrate the initial descriptive high-

level general models that traditionally would not integrate with future

analysis tools, physics-based, or FE models now enable a future MBSE

environment where UML, SysML, or LML software provides a frame-

work for on-demand assessment or trade–space analysis. This opens

upmany newuse cases,many ofwhich align directlywith current inter-

ests for future DTs.

From these points, it becomes clear that MBSE and the vision for

DTs are very closely aligned; if developers are able to integrate those

system models in the operations and sustainment phase of a program,

they together in essence become a DT. In summary, MBSE is the study

and application of system models throughout a system’s lifecycle, and

the authors propose a DT becomes the operational instance of those

various models developed in the early stages of a program.

2.3 FE and physics-based models

FE and physics-based modeling tools are incredibly valuable tools for

DTs. FE modelling identifies potential algorithms or models of interest

for inclusionwithin aDT. In effect, these advancedmodeling techniques

are one of the first insights into a systems performance or failuremode

concerns and indicators.

Today many design or acquisition programs go through some level

of FE modeling to analyze structural performance and reliability.

Research describing the use of FE models date back to at least

the 1940s,51 and computer-aided FE models became popular in the

early to mid-1990s. FE models are of particular interest to this arti-

cle because they have been proven as a method for predicting the

reliability of structural components.52 Today FE models are com-

monplace during system design to identify critical parameters that
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influence specific design performance characteristics, and apply math-

ematics to gain system-specific insights on how requirements are met.

Today many computer-aided design (CAD) modeling programs contain

native FE analysis tools.

Physics-based modeling is often used for performance-specific

applications relevant to the systemunder consideration. Physics-based

or analytical models exist for awide range of design areas including cir-

cuit design,53 electromagnetics,54 gas turbine engines,55 laser atmo-

spheric propagation,56 projectile impact,57 explosions,58 and a wide

array of other performance indicating parameters. Often these mod-

els are used throughout system development and test and evaluation

(T&E ).

Since physics-based and FE modeling is used to verify that a system

design canmeet specific performance characteristics, the insights from

FE modeling can be directly implemented in a DT. The multiphysics

foundation enables DTs to edge closer and closer to a true virtual rep-

resentation of a system, and not just a series of models with extreme

levels of abstractions. If integrating a physics-basedmodel directly into

the DT is not practical, designers may be able to characterize perfor-

mance of the system based on operational or environmental condi-

tions, and embed sensors that capture data that informoperators if the

system is within or out of tolerances determined bymodels.

To provide an example to this concept—if a gimbal tracking system

needs to maintain a certain tracking accuracy and that accuracy is

dependant on jitter or vibration observed on the yoke arms, then

FE or physics-based modeling may be performed to determine the

vibration modes at the pedestal that results in performance degrading

harmonics. DT designers can then in turn incorporate the necessary

vibration sensors into the pedestal and yoke arms tomeasure data that

predict performance. The DT integrated with the system can either

run the physics-based model in parallel to the system, or perform

analysis based on the range of normal parameters identified by the

system. The resulting insights are then fed to operators in real time for

operational decision making, or leveraged for event reconstruction to

inform future operations, training, or maintenance decisions.

The final important aspect to FE or physics-based models is they

provide knowledge on the operational modes of a system being

designed. When compared with operational characteristics of similar

systems in the literature, designersmay findexamplesof other success-

ful performance or health characteristics in academic literature that

can be leveraged. Thesemodeling tools also provide the opportunity to

leverage commercial off the shelf (COTS) tools—essentially providing

PHMoff the shelf.

2.4 PHM overview

PHMwas introduced in the 1990s by NASA and describes the study of

past failure data to devise ways to assess a system’s health based on

current monitoring data.33,59 In recent years, PHM has been studied

as an approach for assessing system health with the objective of intro-

ducing CBM to a system.60–62 Critically for the employment of CBM,

PHM provides predicted system health metrics that can be studied to

aid in decisionmaking. In theDoDtheprimary interest inPHM is in pre-

dicting failures to minimize downtime or maximizing operational capa-

bility. While these motivations are applicable to a wide range of opera-

tional systems, there is particular interest in applications for unmanned

systems since there is not a “man in the loop” that can overcome tech-

nical challenges during operations. In these cases, PHM and notably

PHM for autonomous decision making, something that has also been

explored in recent years,63 is of very high value.

L’Her et al. state “[t]he goal of PHM is to allow systems operators

to catch incipient failures early enough to be able to prevent or cor-

rect them. The consideration of PHM hardware in the early phase of

engineering design can optimize the systemdesign toward this goal.”.33

From this perspective, PHM strongly aligns with the objective of a DT

and provides the conceptual framework for capturing sensor element

data to assess potential failures and provide an overall healthy state.

For this case study, PHM is our primarymeans for enabling the desired

CBMphilosophy.

To implement CBM in a Fleet, system stakeholders need to lever-

age the application of sensors and predictive analytics/prognostics to

schedule maintenance based on when it is needed, versus the tra-

ditional TBM schedule or periodicity used in the past. CBM is an

opportunity to improve system availability, improve maintenance, and

reducemaintenance costs by resolving small issues beforemajor issues

arise. On the other hand, preventive maintenance is based on symp-

toms observed or predicted to mitigate failures once they occur. In

order to successfully implement CBM, there are a number of crit-

ical elements that must be captured. The operational team needs

to understand remaining useful life of components, subsystems, and

systems, and maintenance activities must be scheduled based on

PHMdata.

PHM has a number of similar challenges to DT fielding, notably that

PHM is often a consideration after the initial fielding of a system.33

This means a program does not benefit from PHM until some period

after fielding. Additionally, PHM is a relatively new field, especially

within the Navy; therefore many design teams may not have exper-

tise in remote monitoring or prognostics. To further complicate this,

many algorithms developed to understand health of components are

use-case or technology specific.Many approaches exist for implement-

ing PHM,13 and a variety of different types of algorithms exist for

components such as batteries,64 gearboxes,65 bearings,66 hydrotur-

bine blades,67,68 and others.

Due to thenatural alignmentbetweenDTandPHMobjectives, it can

be concluded that leveraging an MBSE methodology throughout sys-

tem design is a useful strategy and the framework for DT development

outlined in this article successfully aids stakeholders in PHM employ-

ment, but has broader objectives of identifying and implementing other

analytic techniques that might be of interest.

While some of the objectives of DT fielding align well with PHM, it

is important to note there are distinct differences, which will become

clear in the examples of different types of DTs. A PHM system or

algorithm is a component within a system, and rarely exists and pro-

vides value without the parent system. A DT can live as a separate

entity that provides an example of what a healthy systemwill look like.
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F IGURE 4 Google search trends—January 2010 through January 2020Data source: Google Trends.69

Further, a high fidelity and well-integrated DT can assess the impacts

of component degradation on mission effectiveness, something tradi-

tional PHM systems often do not include.

In essence, PHM is one critical component in the evolving and

expanding objectives for DTs, but it is only one component that is com-

bined with other capabilities to deliver new and unique operational

utility. This also exposes DT development to the concept that the DT is

itself a separate system to be architected and integratedwith the phys-

ical asset.

2.5 DT

DT is a concept that has been described for a number of topics prior

to 2004, but has seen a significant rise in the last 10 years as shown in

Figure 4. The termDT essentially describes the development and field-

ing of a virtual representation of a system.70 There are a wide range of

different applications for DTs. DTs are characterized by the seamless

integration between the cyber and physical spaces, and have been suc-

cessfully implemented in product design, production, PHM, and other

fields.71 To highlight the diverse functionality of DTs, several research

areas and applications are described below.

In 2012, the NASA defined a DT as the multiphysics, multiscale,

probabilistic, ultrafidelity simulation that reflects, in a timely manner,

the state of a corresponding DT based on the historical data, real-

time sensor data, and physical model.11 This commonly cited defini-

tion helps clearly couple the relationship between a DT and objectives

forMBSE.

2.5.1 Visual aids

For configuration management for infrastructure modernization,

the DT may provide a user friendly, authoritative source of a digital

view of a physical system that aids users in quickly assessing the as-is

state.72 One example of this type of DT demonstrated in practice

includes LiDAR scan point clouds of a power substation that display

the spatial locations and visual condition of equipment that allows

planners to quickly scan and assess physical assets and infrastructure

requirements. In this example, the DT is the dimensional data of how

the system of system relates to other elements within or external

to the system. In line with the authors’ summary of the objective of

a DT in Section 1.3, this dimensional DT improves decision making,

operations, and maintenance by answering questions on the physical

layout of the as-built system. Those questions may be driven by needs

to expand capacity, remove and replace obsolete equipment, or even

translation into a CAD file type for analysis with other simulation tools

as mentioned in Section 2.3.73

2.5.2 PHM

DTs inmany instances provide the infrastructure to analyze and report

PHM data to stakeholders to better plan and execute maintenance,

assist with troubleshooting, determine remaining usable system life, or

other health data as required by stakeholders. A NASA team,11 along

with many others in a variety of fields demonstrate the value of inte-

grated robust modeling to answer specific and complicated questions.
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DTs have also been proven for airframehealthmonitoring;74 in applica-

tions such as the NASA use case, the DT is responsible for monitoring

crack formation in NASA and Air Force aircraft. These types of appli-

cations can be invaluable for stakeholders managing a fleet of fielded

systems. As mentioned in Section 2.3, one place to look for insights for

implementing PHM focused DTs is early FE modeling, were there may

be significant reuse. Further background information on PHM is pro-

vided in a subsequent subsection.

2.5.3 Lifecycle sustainment models

For the logistics community, MBPS, or product lifecycle management

(PLM) has emerged in recent years and comprises of a family of inte-

grated models that can increase the efficiency of the operations and

sustainment phase of a system.75–79 PLM provides a capability that is

partDTof anasset, plus ananalyticsmodel of the supply systemapplied

to sustainment and the logistics tail. Integrated DT models are effec-

tively a DT of the asset, while MBPS delivers a DT of the supply sys-

tem among other capabilities. Combined they allowmodeling and sim-

ulation of various use cases to optimize support includingmaintenance

overhauls, adaptive training based onhowusers interactwith a system,

enabling dynamic sparing postures, and enabling data-driven decisions

in a variety of other supportability considerations.

2.5.4 Manufacturing

In manufacturing, a DT may be a tool that aids in implementing “Smart

Manufacturing” or improving the manufacturability of new designs,

notably in an IOT world where distributed stakeholders want to mon-

itor physical equipment or manufacturing processes, analyze through-

put, assess ability tomanufacture a componentwith specific tolerances

in a manufacturing process with varying tolerances, and many other

applications.5,80

2.5.5 DT takeaways

In the followingmethodology section, this articlewill demonstrate that

the natural MBSE process performed throughout system acquisition

helps stakeholders identify questions they want their DT to answer.

Onewill notice there is a common themeacross theuse cases andappli-

cationsmentioned above. The application of theDT is focused on deliv-

ering insights on a physical asset’s condition to stakeholders to drive

data-driven decisions. Given the variety of possible DT applications,

the authors of this article propose an underlying general concept of a

DT: the purpose of a DT is to answer some specific question about the

system under consideration.

The key takeaway, and most general definition of a DT the authors

will propose, is that aDT is a formof virtualmodel that answers specific

questions. This is an important definition for the sake of this article, as

the designer of a DT needs to start with top-level requirements for the

DT. What specific questions do end-users need to answer? Examples

of the types of questions a stakeholder may want insights on include:

“How should this device be serviced based on it’s materiel condition?”

“What additional training should be incorporated based on user error

in the past?” or “How much remaining life exists within this physical

structure?”

For theuse casesdescribed in the following case study, theproposed

concept of aDTwill be a packagedmultidisciplinary solution that deliv-

ers prognostics and heath management, with the ultimate objective of

drivingCBMand informing logistics systems that leverageMBPS/PLM.

Many DTs aim to provide performance indicators for decision mak-

ing to stakeholders, mission planners, or operational units, creating

a demand for the reuse of performance models throughout the sys-

tem lifecycle. When considering DT architecture and software, FE and

physics-basedmodelsmaybevaluable for the rapiddevelopmentof the

DT due to the potential for reuse of modeling from the development

phase of system acquisition. In the author’s experience it is not com-

mon for their continued use throughout the lifecycle.

3 METHODOLOGY

While the followingmethodology is applicable to all of theDT concepts

identified in Section 2.5, utility for driving PHM will be the emphasis.

A description of such a DT is closely aligned to that of the NASA defi-

nition discussed in Section 1.3. Designers are interested in leveraging

embedded sensors and the data elements they produce as inputs into

modeling and simulation tools to support PHM, and prompt action by

operational and sustainment teams. While this is similar to the objec-

tives of PHM,DTs offer amuch broader opportunity for real-timemon-

itoring to aid in operations, and an ability to reconstruct a sequence of

events based on sensor data. The end goal is to create an integrated

framework that provides near real-time visualization of overall system

health and streamlines the delivery of data to analysts and operators

allowing themtomoreeasily incorporatedata-driven insights into their

decision-making processes.

One common theme across the current literature and case studies

of fielded DTs, is demand for their development arises out of response

to some emergent need. In theNASA example,11 maintenance and sus-

tainment teams needed an integrated model to monitor crack devel-

opment and structure health impact on aircraft lifespan. In other cases,

practitionerswill find similar drivers during the operations and sustain-

ment phase. It has been shown in the literature that the inclusion of

PHMsensors into a design can have a significant improvement on over-

all system availability.33 Since a DT provides the framework for PHM

implementation, this conclusion canbemadehereaswell,whenconsid-

ering the use case of unmanned systems where the long-term value in

a DT is high due to a significant need to understand andmonitor actual

system health. As a result there can be great benefit in a systems engi-

neering approach toDTdevelopment throughout systemdevelopment.

In this article, the authors propose a process that aids stakehold-

ers and decision makers in the initial conceptualization and architec-

ture of a DT, as well as address the value added for DoD stakeholders.
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TABLE 1 Systems engineering andMBSE efforts

Lifecycle phase Systems engineering processes MBSE efforts

Concept exploration Concept exploration Capability views

CONOPS development Operational views

System-level requirements (Reqs) System services models

Preliminary design Subsystem-level requirements Activity diagrams

High-level design System views

Interface diagrams

Detailed design Component-level requirements Systemmodels

Detailed design Performancemodels

CADmodels

Logistics models

Implementation (assembly) Hardware and software development CADmodel iterations

System assembly Performancemodel iteration

Product support model iterations

Test and evaluation Component requirement verification Use of systemmodels

Subsystem req verification Performance and

System verification product support models

Performance testing to verify system operability

Suitability testing and performance

Operations andmaintenance Lifecycle sustainment Use of variousmodels tomaximize

Reliability analysis reliability, availability,

Performance analysis and performance

Modernization

The authors’ vision of the concept of aDT is an integrated composite of

different algorithms and tools that help analysts and operators incor-

porate data into their decision-making process. In the context of this

article, the authors are focusing on the operations and performance

assessments application of a DT. Those in the operations and sustain-

ment communities will glean insights for their respective industries.

One persistent challenge with the employment of DTs is in practice,

they are often undertaken as a capability applied to a system post its

initial fielding. As a result, the development of this DT is a new addi-

tional activity the sponsor and stakeholders must fund. This limits the

fielding of DTs to large programs in which the development cost is low

relative to the program’s budget, or programs with high numbers of

deployed assets that raises the number of systems benefiting from the

DT, spreadingout thedevelopment cost overmultiple applications. This

is something that the Navy cannot rely on—especially in communities

with low-yield high-mix configurations due to rapidly evolving technol-

ogy and capability. Given the current state of rapid technological evo-

lution, unmanned systems and directed energy are good examples of

these types of programs; there is no strong appetite to build robust

system-specific analytic tools when the system under consideration

will field in a small number, andwill be obsolete in a few years.

In order to overcome this inherent challenge with DTs, the authors

propose the following methodology that can leverage a significant

amount of the work and thought processes followed by themajority of

DoD customers. The following methodology is applicable to programs

both in-development, or currently fielding, and may lend insight to DT

development for fielded systems.

3.1 Systems engineering process

The following methodology is applicable and tailorable to a number

of different systems development and fielding processes. For illustra-

tion of the following methodology outline and case study, the authors

describe the following lifecycle phases and the accompanying systems

engineering processes, and MBSE Efforts of high importance to DT

development (Table 1).

Through this system development framework, outlined in Table 1,

it is possible to break down the specific questions and data elements

that will define the scope, objectives, and drive the implementation of

theDT. By doing so, subjectmatter experts are not duplicating previous

work thatwas performedbyprevious systemsengineers. The following

outline in Figure 5 provides the decision process of architecting the DT

throughout the traditional MBSE process. It is important to note that

while a DT is codeveloped with the physical asset, the DT’s develop-

ment can actually precede the development of the system itself, and in

the right circumstances can in fact aid in the development of the physi-

cal system by providing amodeling and simulation framework. Further,
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F IGURE 5 Digital twin development throughMBSE process

these early DT discussions should also drive component-level require-

ments for the physical asset tomaximize PHMopportunities.

3.2 Step 1: Concept exploration

Throughout the concept exploration phase, stakeholders analyze the

system of systems involved in the intendedmission to identify how the

newsystemworkswithin this operational context.Concept exploration

includes the development of the system CONOPS, and the derivation

of system top-level requirements. This phase is critical for assessing

both the intended use cases and mission threads of the system, but

these questions also provide significant insights to what stakeholders

will desire from the DT; this is essentially the ideal time to identify the

primary purpose of the DT.

3.2.1 Step 1.1: CONOPS

During the CONOPS development phase, systems engineers lever-

age MBSE to identify external system interfaces, and define the mis-

sion context and mission threads. The authors propose that this stage

also helps define the scope of the DT, and its CONOPS for use. The

CONOPS development for the system also helps identify the various

external interfaces that exist to support the mission. Those external

interfacesmaybevaluable sources of data in support ofmissionperfor-

mance analysis, reliability assessments, or logistics implications of the

current state of operations. From a technical perspective, this is a good

time to identify local and remote consumers of DT data. DT designers

can identify the ideal location for the DT to reside; if the primary con-

sumerof data is anoperator of the system, itmaymake sense for theDT

to reside collocated with the device—especially in circumstances with

constrained communications or bandwidth limitations. If the primary

user of theDTdata is a remoteor shore support team, theDTmaymake

sense to reside at their site, or in a cloud linked to the internet or gov-

ernment networks.

3.2.2 Step 1.2: Top-level requirements analysis

During this phase of system development, the acquisition team takes

the system CONOPS and stakeholder top-level requirements, and

explores the set of possible solutions. At this point in system develop-

ment, the authors propose that the systems top-level requirements be

used to identify what types of high-level decision making aids may be

valuable DT outputs. These top-level requirements are also a valuable

source of information regarding the specific mission parameters and

performance indicators the DT can provide answers for. For improving

operations and sustainment, the primary applications for DTs include

reliability, maintainability and maintenance planning, health monitor-

ing, and performance assessments. This is the appropriate time to iden-

tify what specific functions this DT needs to perform.

If the consequence of an unexpected failure is catastrophic or the

cost of a missed mission due to down equipment is high, stakehold-

ers may desire a DT that aids in the assessment of system reliability,

maintains system-specific reliability parameters, and can predict fail-

ures and remaining system life. This may be the case for systems like

unmanned vehicles that may be difficult to recover if there is a failure
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during operations and therefore the financial and operational cost of

unexpected failures is high. If a fleet of systems are sustained with lim-

ited maintenance throughput, the duration of maintenance becomes

an operations planning driver, or other maintenance challenges that

result in high value in maintenance scheduling and prioritization, then

a DT that tracks system health and correlates maintenance actions

to extended system longevity is high priority. If mission performance

or mission success is of high criticality such as a self-defense system

or surveillance system, then a DT that supports performance analysis

to provide insights on system performance based on materiel condi-

tion may be desirable. The ability to provide rapid decision aiding tools

based on environmental or health assessments can be invaluable to

operations planners.

Stakeholders must ask where concern areas are, or where data-

informed decisions have high return on investment; this will inform the

engineering community of priority analytics functions within the DT.

Notable DT goals may be to maximize availability, minimize required

resources, or drive better use of the system based on performance

analysis. Potential high return on investment capabilities include per-

forming predictive analytics to enable CBM, improve maintenance

scheduling and priority, maximizing system availability, predictive part

failures analysis, or other factors. Notable insights include concern

areas that can be tracked or identified by the DT, impacts and value of

those early indications, and the necessary external interfaces that will

exist for the DT.

3.3 Step 2: Preliminary design

During the preliminary design phase, systems engineers take the top-

level requirements, a mission thread, and the CONOPS, and decom-

pose those requirements into the critical functions that the system

must perform. The authors propose that this is the appropriate time

to take the previously identified objective and functions of the DT and

develop the support DT architecture, and the CONOPS of the DT’s

employment. If the program is using a rigorousMBSEprocess, the anal-

ysis performed through MBSE is directly applicable and may be lever-

ageable for the DT development. Any mission modeling that is per-

formed to drive requirements can also be leveraged to analyzemission

degrading impacts due to physical, materiel, or environmental condi-

tions. These insights identify system sources of data to meet defined

DT objectives.

In later stages of the preliminary design phase, systems engineers

leveraging MBSE increase the fidelity of system models through the

modeling of activity diagrams, various system views, interface dia-

grams, and resource diagrams to help derive subsystem-level require-

ments. During this phase, subsystem-level requirements and a high-

level design begin to come together. The developer of the DT can

start to assess what generic data element types inform stakeholders

of subsystem-level health and performance characteristics in support

of the previously mentioned DT objectives. If physics-based modeling

is included in the MBSE work performed by the systems engineering

team, then these subsystemdata elements, algorithms, and integration

requirements should be leveraged within the DT—either by the reuse

of MBSE models becoming the foundation of the DT, or by the repli-

cation of the MBSE process and framework within the DT leveraging

other analysis or modeling and simulation tools.

This is the appropriate time to revisit the DT objectives to concep-

tualize the data requirements to support the DT. One general DT data

element of high interest for a broad array of DT applications is oper-

ational sensor data. If embedded sensors are expected to exist within

subcomponents of interest, those data outputs may be useful for trend

analysis and correlation to specific casualties, may indicate or trigger

specific maintenance actions, andmay provide insights to system-level

performance impacts basedon subcomponent performance indicators.

For a reliability, failure prediction, and remaining system life DT, it

may be beneficial to begin to build a detailed system tree or config-

uration document identifying all components within the systems, and

the missions they support. Data should be associated with each entity

within the system configuration documentation. Specific data types

thatwill aid in the analysis include but are not limited to casualty track-

ing data, configuration data, component history and usage data, envi-

ronmental data, and operational data.

For a DTwith requirements to support maintenance scheduling and

prioritization, the DT will likely need to consume maintenance data,

sensor data that indicate degraded performance, and some level of

remaining component life indicators to drive the replacement of com-

ponents that are high risk.

For a DT that emphasizes performance analysis, the primary data

source for analysis will be the previously mentioned subcomponent

sensor feeds. DT developers and systems engineers should work with

the component subject matter experts to identify how subcomponent

performance is traceable to system-level performance so that system-

level performance indicators can be created from component sensor

data. One possible valuable architecture for this type of DT is the con-

cept of risk-based decision making81–83 to inform mission planners of

the various probabilities of mission success.

At this point in a system’s design process, PHM or performance

assessment methods will come into play. DT developers should begin

to work closely with component engineers to identify and verify the

right data sources and data elements are being considered. It is criti-

cal to capture derived system requirements that are necessary to sup-

port the DT, and ensure those requirements result in the necessary

hardware and software changes to support DT. It may be necessary to

revise the design to include additional sensors to ensure the appro-

priate data will be available in the final product. By this point, the

DT framework should be well established, and estimated data can be

entered into theDT for test andvalidation that theDTsupportsmission

requirements.

Once theDT architecture and data elements are defined, it is appro-

priate to begin to develop the digital thread, or the integration of sys-

tems and communication channels that transfer DT data from sources

to consumers.84,85

As the system’s conceptual design matures, so will the DT as spe-

cific data elements of interest can be inferred before final parts selec-

tion. If enough investments are made in the DT, it can now start to
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be used as a design aid by providing modeling and simulation capa-

bilities for the analysis of alternatives. This may come in the form of

a detailed requirements tree that assists with allocation of reliability

requirements, jitter budgets for laser, radar, or electronic warfare sys-

tems, or other health or performance characteristic metrics of inter-

est.When considering the development of theDT, this is a good time to

finalize the DT’s architecture, and identify what sensors are expected

to exist within the system that data need to be collected from, what

application programming interface (API) is required to collect and dis-

tribute that data, and what the resulting data collection and storage

requirements are for the DT.

3.4 Step 3: Detailed design

As the system design progresses into component-level requirements

and a detailed design, sensor or component-specific data elements

need to be mapped to the appropriate functions and algorithms

within the DT. Many derived component requirements may need to

be pulled into the DT. For example, a highly redundant phased array

radar’s effective transmit power scales with the low-level compo-

nent powers. These types of component-level design trades drive a

detailed system design that meets system-level requirements. For a

performance-focused DT, this analysis is the foundation for the future

DT’s performance analysis algorithms. Modeling performed to confirm

that component-level parameters support system-level requirements

lend direct insight to how that data, when collected and monitored,

will assist in PHMor performance analysis.

If these component design trades are not performed through the

MBSE process, the opportunity still exists for design engineers to

develop algorithms assessing component-level performance variations

on the system-level performance or reliability capability, but the DT

development will require more attention from the component SMEs.

Various disparate DT algorithms or models can now start to be

integrated where possible. If risk-based decision making is being used

to build a composite recommendation based on disparate PHM algo-

rithms, this is the appropriate time to start determining weighting fac-

tors for the different models.

From a DT development perspective, by the end of the detailed

design phase, DT designers should have enough information by this

point to finish the preliminary design for the DT, ensure the included

analytics techniques and algorithms perform correctly. If so, DT soft-

ware can be written, artificial data used to verify interoperability, and

validate recommendations.

3.5 Step 4: Implementation (assembly)

During the software and hardware development phase, the system

under consideration materializes as the system is assembled from its

base components. This means sensors, hardware elements, and soft-

ware that generate data that will be analyzed by the DT now become

available to DT designers. As a result, a best practice would be to

leverage the DT to feed performance insights back into the system’s

design as an analytics framework.During prior steps,DTdesigners take

insights from the system’s design to drive the development of the DT.

By this point the DT’s objectives, architecture, and design should be

stable and the DT sensor requirements previously identified should be

manifesting in the physical system.

3.6 Step 5: T&E

When the system transitions into the T&E phase of the program, DT

developers nowhave an opportunity to begin to use theDT, collect test

data, and train DT algorithms. There also may be opportunities to use

the DT and algorithms to support T&E, as outlined below.

3.6.1 Step 5.1: Component-level testing and
verification

At the component testing phase of system development, the design

teambegins to collect data on the performance of system components.

This makes it a good time to start demonstrating the capability of the

DT, and depending on level of designmaturity of both theDT and physi-

cal system, theDTmaybe a valuable tool formany subcomponent tests

and validations. As components start to transition into component-

level testing, any data collected should be loaded into the DT to verify

algorithms work as intended. This may be a reasonable time to begin

collecting these sensor data to build the system’s data library. In certain

circumstances, the design team can use the DT to model actual com-

ponent performance and the expected impact on system-level perfor-

mance. This can assist with validation that the chosen parts do support

the top-level design.

Finally, the logging and storing of component data throughout the

system’s lifecycle may be a desired function of the DT; if this is the

case, the DT should be collecting and logging serial number specific

data elements. These data elements will be valuable for comparing

laboratory versus field conditions impact on performance, and over

time will be the initial data elements for long-term reliability and per-

formance trend analysis. Additionally, if there are performance differ-

ences between identical fielded units, these historic component data

elements may provide valuable serialized data sets for analysis and

engineering investigations.

3.6.2 Step 5.2: Subsystem-level testing and
verification

During subsystem testing the involvement of the DT is very similar to

that as in component-level testing, but by testing higher level assem-

blies, designers may have better interfaces to work with. If DT devel-

opment is advanced enough, the actual interface that passes data from

the physical asset to the DTmay be stable and can be used and verified

as well.
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3.6.3 Step 5.3: System-level testing and
verification

As the program enters system-level testing, the design and test teams

should now be able to leverage most of the M&S capability within

the DT and it can be a valuable asset for performance analysis. If

the DT is focused on reliability modeling, maintenance scheduling and

prioritization, or feeding a PLM tool or logistics chain, then the DT

may not have large enough sample sizes to be high impact. In these

circumstances T&E data should be collected to support the build-

ing and refining of algorithms—especially if machine learning is to be

used.

3.7 Step 6: Operations and maintenance

Once the system under development hits deployment, operations, and

maintenance, the DT should now be employed with the physical asset.

A rigorous data collection, storage, and analysis processmust be estab-

lished to build a strong data set with which the DT can draw insights

from. Stakeholders should start addressing feedback or recommenda-

tions from the DT when making decisions about operations and sus-

tainment of the system. If recommendations are good, confidence will

grow in the DT. If recommendations are bad, the DTmust be refined as

necessary.

DT development does not end once the physical asset is deployed.

As with any data science program, increasing volumes of data improve

model accuracy and analytics capability. Data collected in the early

stages of the program are essential to refining these models. Fur-

ther, stakeholders such as fleet stakeholders may identify emergent

requirements for the DT, or changes to the DT based on changes to

the support infrastructure, depot locations, updatedmaintenance task

analysis efforts, etc.

3.8 Methodology summary

The methodology outlined in this section demonstrates that the pro-

cess for defining, architecting, building, testing, and deploying a physi-

cal system naturally aligns with the process a systems engineer would

take to design and build a DT. Themethodology demonstrates how key

MBSE processes that drive system architecture also drive DT architec-

ture. Critically, the discussions around the development of these mod-

els support the development of the DT including:

1. Operational views provide insights to where the DT should inte-

grate with the system andwhere datamight be consumed.

2. Activity models show the system actions and interactions of inter-

est for DTmonitoring.

3. Systemhierarchymodels show the systemof systems, components,

and subcomponents of interest for display or monitoring.

4. Scenario diagrams show mission threads of particular interest if

there is motivation tomodel mission performance.

From a return on investment perspective, this methodology accom-

plishes two goals for stakeholders. First, the DT is available to support

early phases of the program—possibly including T&E. The up-front

investment in a DT model ties together all of the available analysis

performed throughout the lifecycle, rather than a limited subset,

maximizing total utility. Second, DT development is not an isolated

delayed activity initiated postfielding after a systematic issue has been

observed in the operations and sustainment. Given these concepts, it

is fair to assume these two factors result in decreased overall cost of

DT development and employment.

4 CASE STUDY

This section presents a case study to illustrate and demonstrate the

method proposed above. The case study presented here is not an

exhaustive study of a specific system. Instead, the case study shows

how themethod canwork in a simplifiedmanner to highlight the bene-

fits of themethod.

4.1 Unmanned systems background

In recent years there has been an explosion of unmanned systems

entering the maritime environment. A wide range of both surface

and subsurface unmanned systems are currently operational. Of note,

Seagliders have been employed for academic and research purposes

for many years.86–90 In the surface community, unmanned surface ves-

sels (USVs) have seen significant growth in recent years as well. In

2016 theU.S. Navy fielded amediumdisplacementUSV named the Sea

Hunter,91 with an operational architecture defined by Casola et al.92

Use cases of these systems range from logistics transport vessels,

environmental data collection and monitoring, surveillance and patrol,

and a wide array of military applications.93 For the case study of this

article, the authors will build upon the conceptual USV (USV) mission

sets describedbyCorfield andYoung,94 Ru-jianYanet al.,95 andYaakob

et al.96 In these examples, the concept of unmanned systems are thor-

oughly explored as a cost effective, low risk, force multiplier—notably

for littoral environments.93 The specific use case under consideration

is the use of a distributed fleet of USVs for the patrol of a remote island

area. Of particular relevance to the topic of DTs, unmanned systems

offer a new challenge when compared to manned vessels—unmanned

vessels do not have a human in physical contact with the asset that can

resolve or mitigate risk from unexpected failures. As a result of this

challenge, there is lower tolerance for risk and increased need for fault

diagnosis, fault tolerant controls, and redundancy.97

This case study will leverage an idealized unmanned surface vehicle

(USV) to compare theoretical availability both with and without a DT

developed in parallel to the system.

As shown in Figure 6, there are a number of commercially avail-

able unmanned systems that are inherently modular and can support a

variety of hardware modules and missions. Notable examples include

the Arctic Research Centre Autonomous Boat (ARCAB),98 Aquarius
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F IGURE 6 Currently available unmanned surface vessels of
interest for this case study

USV Vessel under development by Eco Marine Power,99 MANTAS

Unmanned Surface Vessel developed by MARTAC Systems,100 or sev-

eral products produced by 5G International Inc.101 These systems are

shown and described to familiarize the reader with comparable real-

world systems. The following case study will not assess any of these

vehicles directly, and will leverage a generic USV architecture.

USVs are regularly cited as a natural platform for surveillance.102

For this case study, an idealized fictitious operational scenario will be

used. This case study is illustrative of the method and is representa-

tive of what might happen to the real system but is explicitly not used

to make engineering decisions about any real specific system or ongo-

ing project.

4.2 USV mission context

A small fleet of USVs operate out of an unmanned orminimallymanned

forward USV base, as seen in Figure 8. These USVs autonomously

patrol a coastline via fixed GPS coordinate waypoints. The specific

coastline in consideration is of important strategic value and the cost of

a missed or failed patrol is considered high to stakeholders. Due to the

remote operation area, logistics delay times are significant and main-

taining a largemanned contingent becomes costly.

4.3 USV scenario

The following system assumptions aremade in the case study:

1. The unmanned vehicle’s primary purpose is littoral patrol.

2. The unmanned vehicle is semiautonomous and can run missions

based on GPSwaypoints.

3. The unmanned vehicle is based out of a forward operating,

unmanned or minimally manned port and has the ability to periodi-

cally replenish its fuel reserves.

4. There is a fleet of 10 unmanned systems.

The following stakeholder assumptions aremade for the sake of this

analysis:

1. Inability to perform amission is of high consequence.

2. Lossof communicationsof theUSVhas ahigh likelihoodof resulting

in complete loss of a USV.

3. Due to the cost of sustaining the forward-operating base, assets in-

theater are kept to a minimum, including maintenance crews, sup-

port personnel infrastructure, tools, and spare parts.

4.4 Case study systems engineering process

For this case study, the high-level generic architecture consists of a

battery-based energy storagemodule (ESM) that serves as the primary

energy stores for the USV, an electric propulsion system, a satellite

communication (SATCOM) system, surface electro-optical (EO) cam-

eras for surveillance, water sampling systems, and an onboard com-

puter that controls the USV. An example block diagram can be seen in

Figure 7.

The following describes the systems engineering methodology, and

the resulting DT insights gained at each step.

4.4.1 Step 1: Concept exploration

Stakeholders require an USV that can operate in a remote forward

operational area. Due to the high volume of searchable area that

requires patrolling, and the significant burden of sustaining a large

team at this remote site, USVs have been identified as the appropriate

asset. USVs will execute continuous patrolling operations along a long

and extensive coastline.

Due to the remote nature of this forward operating site, the port

is minimally manned to reduce logistics requirements, which puts an

increased priority on the ability to predict and planmaintenance, hard-

ware remaining usable life, and potential hardware failures. The imple-

mentation of PHM to aid in the prediction and scheduling of mainte-

nance is a key function of the DT.

Due to the high priority of this specific coastal area, inability to per-

form a mission due to unplanned maintenance or hardware failures is

high consequence. Given the nature of autonomous operations, there

is an always present risk of total system loss due to some critical fail-

ures. These factors drive requirements for the DT to monitor each

USVs health, perform predictive failure analysis. For this case study,

this drives a confidence in availability to 95%.

Due to the potentially long transit times of the USV, and loss of

awareness if a unit is recalled and a replacement is redeployed—

stakeholders will want the DT to answer questions regarding the sys-

tem’s ability to successfully perform a mission based on the perfor-

mance metrics of its components. This decomposes to a requirement

for the DT to perform analysis for sensor systems, propulsion systems,

and communication systems. Algorithms that aid in the tracking of the

health and performance of these components is of high value to avoid

missedmissions.
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F IGURE 7 Block diagram for the notional USV

F IGURE 8 USV operational environment

Given the stakeholder requirement analysis performed throughout

the concept exploration phase, the DTs CONOPS can now be formal-

ized. There is concernwithmissedmissions, and lost USVs due to unex-

pected system failures. It is important that at this point in the require-

ments analysis to assess stakeholder risk tolerances.

1. Predictive failure analysis: will identify components that are at

high risk of near-term failures. Local stakeholders will leverage this

information to plan near-term preventive maintenance and deter-

mine which assets should execute specific missions. Predictive fail-

ure analysis will also be used to prompt the ordering of repair parts

when certain risk thresholds aremet.

2. Health monitoring: will aid in mission planning to ensure vessels

selected for specific missions have the ability to perform the nec-

essary mission, and will help plan longer term maintenance actions

such as major system overhauls that will take USVs offline for

extended periods of time.

3. Physical location: given that the primary consumer of DT data will

be the operations and maintenance teams so it is logical for the

DT to reside at the forward USV base with some of the process-

ing performed by the USV. General health monitoring data can be

remotely transferred to additional stakeholders via an internet con-

nection. Operators will want constant health and status of the USV

and there is also value in emergency PHM reports directly from the
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USV to the forward base to aid in recovery after an unexpected

loss.

Taking the required functions and general CONOPS from the pre-

vious step, DT developers can now identify the general types of algo-

rithms that will support these mission areas. For component fail-

ure predictions, algorithms and methodologies need to be gathered

from application-specific literature and collaboration with the physical

asset’s design teams as the system’s preliminary design solidifies and

the types of components are identified.

4.4.2 Step 2: Preliminary design

When an acquisition program gets to the preliminary design phase,

DT developers know the general DT CONOPS and architecture and

can outline the DTs architecture. Embedded sensors throughout the

USV provide data to the USV onboard computer, which performs basic

data reduction and sends status updates to the shore support com-

munity. Upon return to the Forward USV base, data are uploaded to a

computing system. As the preliminary design progresses and the high-

level USV design depicted in Figure 7 is selected, the DT developer can

begin to look at the available PHM literature to identify the specific

algorithms.

System models such as activity diagrams, interface diagrams, and

service models inform stakeholders that shipboard infrastructure is

required to collect PHM data. The onboard computing module within

the USV already contains the necessary interfaces to support this

analysis.

Once the general DT CONOPS is defined, it is valuable to assess

current PHM and performance analysis techniques that are applicable

to the system under consideration. This helps refine the DT architec-

ture and identify system sources of data. For this case study example,

PHM iswidely studied for Lithium Ion batteries, and tools are available

such as the Adaptive Recurrent Neural Network (ARNN) developed by

He et al.64 to conduct PHM analysis. For the application of PHM for

the electric propulsion system, a process such as that developed by

Ginart et al.103 maybeuseful. Identifying these typesof algorithms that

exist help clearly identify systemsourcesof data, or areaswhere senors

might be of interest.

This process may not work for all subcomponents in the system. For

example, SATCOM antennas come in a variety of architectures with a

wide array of electronics. In these cases, workingwith the component’s

OEM tomodel or derive reliability parameters may be necessary.

Toward the end of the preliminary design phase of the USV’s archi-

tecture, we now have a defined DT architecture, we have identified

system sources of data and some types of general algorithms that will

assist with the necessary analysis, data requirements can start to be

defined, and a digital thread can be established. DT system require-

ments can now start to be integrated into the system’s requirements

documentation, and as hardware is selected, assessments can bemade

regarding whether or not included sensors are sufficient to meet DT

requirements, and if not—additional sensors can be designed in during

the detailed design phase.

4.4.3 Step 3: Detailed design

As the system transitions into the detailed design, DT architects can

now verify that the chosen designmeets the necessary sensor require-

ments for the DT, and DT designers can now verify these parameters

are available for the selected battery systems in the USV, and these

data elements can be mapped to specific sensors of interest. At this

point, a data/sensor traceability matrix may be of value to ensure all

PHMdata streams have the appropriately identified data source.

Any physics-based models or FE models generated for system

assessments also come into play at this point. With a relatively simple

system such as this USV, PBMs are likely to only be performed for the

surface vessel’s structure, and induced jitter on the sensor payload. It is

assumed that this is the case, and thesemodels arementioned below.

4.4.3.1 PHMalgorithms and considerations for theUSV case study

For the lithium-ion batteries in the power storagemodule, the PHM

algorithms use internal impedance, cycle numbers, and battery aging

rate to determine remaining useful life. Cycle numbers and internal

impedance is readily available formost lithium ionbatteries sodata col-

lection is trivial. The battery-specific aging rates need to be character-

ized, so that data will need to be included in test plans for component

testing so that they can be analyzed and the necessary PHM algorithm

can be developed to support initial fielding.

For the propulsion system, Ginart103 has shown PHM can be imple-

mented by analyzing the inverter pulse-width modulation (PWM)

waveform to analyze transistor degradation. PWM data need to be

included in the DT plan, and the design team needs to ensure integra-

tion between the onboard computer and the necessary sensors to cap-

ture PWM.

Strain gauges and fiber optic sensors are one accepted way to

monitor structural health and fatigue.104–108 Grisso and Drazen have

demonstrated the use of sensor data for DTs of ship structures.105

Fiber optic sensors are inherently rugged, and instrumenting a rela-

tively small USVwith these fibers is a very achievable endeavor. This is

an areawherePBMmayhaveplayed an important role in hull selection.

Models used for the assessment and downselect should be assessed

to determine if the new application of PHM sensors align with model

inputs or outputs. If so, bounds or correlated values may be drawn for

early versions of themodel.

Employing PHM for complex electrical systems can be challenging.

In the case of the SATCOM subsystem DT developers have options.

First, they can rely on the built in test capabilities provided by the SAT-

COM system vendor. Second, DT developers can inspect the system

andperforma failuremodes effects and criticality analysis (FMECA)109

to assess the various failure modes that will result in degradedmission

performance, a failed mission, and total loss of an operational asset.

For each of these failuremodes, DT developers can analyze the various

embedded sensors supporting each mission, and work with the design
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team to collect data sets that can be correlated to each failure mode.

Prognostics failure mode/sensor data correlation and algorithm devel-

opment can be a major undertaking so it may be best to defer to the

OEM for a small program.

PHM for electro-optic systems (EO/IR) will likely be focused on

degrading sensor performance and the EO/IR’s ability to support mis-

sion requirements. Monitoring changes from baseline or the sensors

ability to modify contrast, blur, noise, or dynamic range will provide

indication of system performance. Stakeholders can analyze these per-

formance indicatingparameters to correlate outputs toperformance in

detecting and identifying targets at required ranges. There have been

several studies andmethodologies developed to applyPHMtocomplex

electrical systems that may aid design engineers and DT developers in

building capability within their systems.110

The DT data source and algorithm mapping is now driving embed-

ded sensor requirements, the onboard computing system now has the

additional requirements of hosting the DT models, and the SATCOM

antenna has the additional requirements of providing data link to the

forward USV base.

4.4.3.2: DevelopDT software

For the implementation of the DT, developers have a number of

different tools at their disposal. DT work can be done in LabView,

Simulink, MATLAB, Python. In general, any tool that can support

the required analytic processes can work. There has recently been

the emergence of advanced software tools that have built in physics

engines and models that can accelerate some development timelines.

In our use case, the DT is intended to run continuously during oper-

ations and partially resides within the physical system therefore a

human-in-the-loop excel based or other software tool that works opti-

mally when controlled by a user is not desired.

For the architecture of the DT described, as previously men-

tioned embedded system sensors continuously collect data during nor-

mal operations. Block-specific algorithms analyze those sensor data

streams and provide maintenance and performance insights to oper-

ations andmaintenance teams.

The final remaining key component of the DT is something that

translates individual component knowledge into actionable infor-

mation. In this case, the DT is monitoring the individual health of

SATCOM

4.4.4 Step 4: Implementation

During the system implementation phase, the DT framework should

be developed, algorithms should be notionally established, and where

possible validated or tuned with real data captured during any compo-

nent testing that was performed during the detailed design.

In this case study, we will keep the specifics general to remain hard-

ware agnostic. During system implementation, the DT should be fully

integrated with the physical asset: sensors identified in the previous

step must be integrated into components, data interfaces must be

established between sensors and the onboard computer to collect and

analyze data, operations andmaintenance recommendation toolsmust

be established, and data collection/transfer software must be written

to deliver data to stakeholders for postevent construction.

4.4.5 Step 5: T&E

Given that the primary purpose of the USV DT is to predict failures,

track reliability, aid in maintenance planning, and indicate probability

of a future failed mission, the DT in this case study is not expected

to have significant value to stakeholders during the T&E phase. Areas

where thismaybe reconsidered include specific parameters stakehold-

ers may have identified as critical key performance indicators such

as EO/IR performance assessments, propulsion performance param-

eters, power storage voltage or amperage values under load, or SAT-

COMbandwidth.

4.4.6 Step 6: Operations and maintenance

Once the system enters operations and maintenance, the DT becomes

fully operational. For the analysis of the impact of implementation

of the aforementioned DT on a USV, notional mean time to fail-

ure (MTTF) data has been identified for the blocks of the USV

under consideration. The following table identifies these reliabil-

ity parameters. Additionally, this DT monitors optical sensor perfor-

mance, which will predict possible mission failure due to performance

degradation.

The primary delivered function of this DT, as shown in Figure 9,

provides health and performance characteristics on the SATCOM,

onboard computer, EO/IR, hull, energy storage, and propulsion sys-

tems.While valuable, these insights have limited value to an entry-level

USV operator or maintainer. A maintenance and mission planning rec-

ommendation system front-end is a necessary final component.

4.4.7 DT development summary

The previous steps demonstrated that the various stages of MBSE

usage during the system development process can clearly help scope

and define the requirements for the DT. Specific to this case study,

stakeholders see high value in a DT that aids in predictive analytics

tominimize downtime. Throughout theDTmethodology, specific PHM

algorithms andmethodologieswere identified thatwill aid in the future

PHM that will drive predictive analytics and enable CBM. It is impor-

tant to note that there is a common theme in the PHM processes

identified—they require the usage data, sensor data, and environmen-

tal data to perform their functions. The individual algorithmswithin the

DT make system-specific recommendations to operations and mainte-

nance crews for the upcomingmaintenance and parts required for con-

tinued operations.

It is also important to note that there is also an opportunity to lever-

age the data coming out of the DT to aid in improved usage of the sys-

tem. This would be done through monitoring usage of some of these
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F IGURE 9 Final DT architecture

blocks, but the modeling of that impact on system operation is a use-

case–specific application and is slightly out of scope of this article given

the objective of the case study is demonstrating the ability to leverage

the MBSE system development process to generate a DT. Further, the

analysis in this case study demonstrates there is a high potential for

very early return on investment from this development.

4.5 Assessing DT availability improvements

Since the specific components, sensors, and operational context were

generalized in this case study, actual performance analysis of the con-

ceptualDT cannot bedetermined. Assessing the impact of a conceptual

DT, however, is a great way of demonstrating applicability and value in

the application of a DT. In this case, we can estimate the baseline theo-

retical availability of theUSV systemwithout aDTbased on data found

onvendorwebsites andwithin the literature. That baseline number can

be compared to an estimated value based on a theoretical improve-

ment by a DT that offers insights on requiredmaintenance or potential

failedmissions.

For the reliability modeling of the deployed USV, the availability

modeling process used for this case study is described byWard et al.111

Figure 10 shows the sequence of events within a Monte Carlo simu-

lation. Reliability data, shown in Table 2 were gathered from a num-

ber of manufacturer specifications for representative hardware. Crit-

ical parameters for this model include MTTF, sometimes referred in

other publications as mean time between failures (MTBF), mean logis-

tics delay time (MLDT), and mean time to repair (MTTR). These terms

are all defined in OPNAVINST3000.12a.112

TABLE 2 Notional failure rate data for the USV

System functional block

MTTF

(hours)

MLDT

(hours)

MTTR

(hours)

SATCOM 10,000 336 3

Onboard computer (OBC) 25,000 168 4

Electro-optic sensors (EO/IR) 25,000 336 3

Energy storagemodule (ESM) 130,000 336 3

Electric drive (ED) 25,000 720 16

The reliability and availability numbers under assessment havebeen

captured from a variety of manufacturer and academic sources. It is

assumed that each major assembly has a normal distribution for its

MTTF,MLDT, andMTTR.Delay times are estimated based on the expe-

rience andnumbers observedby the authors in their professional expe-

rience given the operational scenario outlined in this case study.

4.5.1 Monte Carlo simulation

To assess the theoretical system availability pre-DT incorporation, the

data in Tables 2 and 3 were used. No variation was added to the mean

times to repair as any deviation in material challenges are captured in

the variance of MLDT. It was found that the system would experience

anoperational availability of approximately 0.93. If stakeholders deter-

mine they want a 95% confidence that no missions will be missed, that

will drive the number of available USVs or spare parts to support the

missions up significantly.
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F IGURE 10 Monte Carlo simulation:Ward et al.

TABLE 3 Notional failure data standard deviations for the USV

System functional block MTTF SD (hours) MLDT SD (hours)

SATCOM 3,000 168

Onboard computer (OBC) 7,500 168

Electro-optic sensors (EO/IR) 7,500 168

Energy storagemodule (ESM) 39,000 168

Electric drive (ED) 7,500 168

The improved operational availability significantly reduces the con-

cerns for maintaining an inventory of spares for the operational pop-

ulation. From the traditional operational availability (Ao) calculations

defined in OPNAVINST3000.12a,112 we can generate theoretical Ao

values for each individual block within the USV. The equation for Ao is:

Ao =
MTTF

(MTTF +MDT)
where MDT = MLDT +MTTR. (1)

In the equation above, MTD is mean down time, an aggregate of

any downtime factors including logistics delays, admin delays, outside

assistance delays, or others.

From the values in Equation 2, an Ao of 0.917 can be calculated for

the pre-DT condition.

This also provides the opportunity to field casualty or failure-

specific training when needed along with the component, something

of interest to the operations research community that will not be dis-

cussed at length in this article.

To analyze the potential impact of a DT, the Monte Carlo was rerun

with a new set of input parameters that reflect a DT that predicts

70% of failures. From available data sources, an estimated PHM sys-

tem that predicts 70-percent of failures seems very reasonable given

the maturity of PHM algorithms for the components under consider-

ation. MLDTs were decreased by 70% to estimate the reduced wait

times due to predicted failure events. Mean times to repair were kept

the same.

To analyze the sparing requirements for the forward operating base

based on failure rates, we can leverage a Poisson distribution113,114 to

analyze sparing requirements at a specific confidence requirement. To

do so, the following equation can be used:

Spare Requirement = (T × n)∕𝜆 + q95
√
(T × n)∕𝜆, (2)

where:

∙ T is mission duration or period between sparing

∙ n is the number of operational systems

∙ 𝜆 is the failure rate of the component

∙ q95 is a constant corresponding to the confidence level desired, and

for a 95% confidence is 1.645

In this instance, a mission duration of 4 weeks is reasonable since

the logistics delays assumed are equal to 2weeks. The number of oper-

ational systems is 10 from the case study assumptions.

From the spare parts requirements analysis, Table 4 shows the the-

oretical operational availability value outputs from the Monte Carlo

simulation, and Table 5 covers the corresponding estimated number of

spares for each major assembly with and without the fielding of a DT

based on the previously mentioned availability figures.

The resulting availability of the remodeled data resulted in a new

system-level operational availability of 0.973, a significant increase
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TABLE 4 Monte Carlo simulation results

System functional block

Theoretical Ao

without DT

Theoretical

Aowith DT

SATCOM 0.967 0.990

Onboard computer (OBC) 0.993 0.998

Electro-optic sensors (EO/IR) 0.987 0.996

Energy storagemodule (ESM) 0.997 0.999

Electric drive (ED) 0.971 0.991

TABLE 5 Sparing requirement comparison—DT deployment
results in a significant reduction in required spare

System functional block

Deployed

spares

without DT

Deployed

spares with

DT

SATCOM 3 1

Onboard computer (OBC) 2 1

Electro-optic sensors (EO/IR) 2 1

Energy storagemodule (ESM) 1 1

Electric drive (ED) 2 1

from the previous value of 0.917. At 70% failure prediction, rather

than sparing each of these components and maintaining a large inven-

tory, components can be purchased prior to failure and installed when

needed. This represents an approximately 5% improvement in avail-

ability compared to the pre-DT configuration. At this availability rate,

such a small fraction of missions will be missed due to unexpected fail-

ures thatmany stakeholdersmaybewilling to accept sparingonlywhen

needed. Given the risk-adverse perspective of the fictitious stakehold-

ers in this case study, fielding one of each spare to the forward base is a

reasonable compromise between cost and risk, and is shown in Table 5.

From these results, the number of required deployed spares prior

to DT fielding is almost two complete USVs. Every major functional

block requires multiple forward deployed spares, significantly driving

up the procurement and sustainment costs. Further, some of these

components may run past initial warranties offered by vendors due to

extended periods sitting on the shelf waiting to be installed.With a DT,

less than1of each spare is required. Thenet impactof this change is sig-

nificant procurement and sustainment cost savings, reduced inventory

and logistics footprint, plus other downstream improvements provided

by the integrated DT. When comparing these sparing requirements to

the post-DT fielded solution, it quickly becomes clear that there is high

utility in scenarios like this for the fielding of DTs.

5 DISCUSSION

This article develops a methodology that walks systems engineers

through the development of a PHM-centric DT system in parallel to

the physical asset being developed. By leveraging the various MBSE

requirement decomposition and view development processes, a DT

based on system operational requirements, system functions, and

both inter and intrasystem interfaces can be conveniently architected

and fielded alongside the low rate initial production assets. Addition-

ally, through modeling the case study demonstrates how the appli-

cation of various PHM algorithms can increase operational availabil-

ity, while reducing deployed spare parts required on-hand to maintain

fleet readiness.

Within the case study, considering the theoretical availability

percentages in Table 4, sustainment teams have an interesting predica-

ment. The overall availability of the components in the USV is quite

high, meaning there is low demand for these components. Due to the

low demand of these components, contracts with suppliers may not be

maintained, inventories within the Naval Supply or Defense Logistics

Agency (DLA) systemsmay not bemaintained, and logistics delay times

when parts are needed may periodically spike. In the authors’ experi-

ence, programs maintaining systems such as these may occasionally

have part lead times lasting several months, resulting in exceptionally

poor operational availability, missed missions, and potential threats

to national security. As a result, the MDTs identified in this case study

are naturally extremely conservative, and the true benefit of the

deployed DT may be significantly higher than that demonstrated in

this case study. In effect, the case study has demonstrated a return on

investment due to the implementation of PHM in agreement with the

resulting takeaway from the PHM article described by L’Her et al.,33

“a system can be designed with PHM hardware instead of expensive

redundancies while maintaining a similar system reliability.” While

this article did not directly dive into the performance analysis decision

aid value of a DT, it is clear that the fielding of the capability will offer

high utility to operational teams aligning operational assets to a set of

missions of different levels of criticality, risk tolerance, or performance

requirements.

The inherent benefits of the approach proposed in this article is that

it provides a natural and intuitive framework acquisition Systems Engi-

neers can follow to deploy DTs for their systems. It also reduces the

cost of deploying the DT because it leverages the processes already

followed by system developers, ensures DT and PHM components

are integrated into the system by pushing PHM discussions earlier in

the system architecting process, eliminating an additional tasking and

efforts postdelivery. The implementation of the DT also has a signifi-

cant impact on operational availability at levels comparable to improv-

ing built in redundancy. Finally, the DT offers an architecture for the

capturing, storing, andanalysis of componentperformanceand reliabil-

ity data—a critical and invaluable element on an infant system as stake-

holders resolve reliability and performance issues.

Theone significant drawback that existswith the approachprovided

by this article is it relies on systems engineers to develop the archi-

tecture and framework for an integrated PHM system. Not all sys-

tems engineers are PHM subject matter experts, and will therefore

rely on existing PHM analysis and research that is directly applicable

to the components included in their system design. In emerging fields,

notably ones with dramatically new or different architectures from

previous system designs, there may not be publications and research

into PHM applications. In these cases, the development of a PHM
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strategy will increasingly fall upon the hardware and software subject

matter experts, effectively eliminating the efficiency of developing the

DT in parallel to the system.

Another drawback that exists is DT developers need mature stake-

holder requirements, objectives, and possibly assessment of risk. If

these areas are not mature enough, DT development efforts may put

the program down a path of investing engineering time, sensor imple-

mentation, or algorithms that do not answer the specific questions

stakeholders will require. This will result in a suboptimal DT, and pos-

sible rework or redesign of the PHMarchitecture.

6 FUTURE WORK

This article has demonstrated the alignment betweenDT,MBSE, PHM,

and FE modeling but there are a variety of other research areas of

direct applicability to DT development and fielding. The fields of mis-

sion engineering, PLM, and T&E enable new expansion of the inte-

grated model concept as well as open DT data consumers. Addition-

ally, risk-based decision making and aggregate risk provide new ways

to interpret DT data—notably as diverse DT applications such as con-

figurationmanagement, sparing, reliability, and environmental data are

brought together to aid in operational decisionmaking.

6.1 Mission engineering

One notable area that deserves significant exploration is the appli-

cation of DTs to the emerging field of mission engineering. Mission

engineering is effectively the analysis and design of a mission as one

would a system.Mission engineering has beendefined byWertz as “the

definition of mission parameters and refinement of mission parame-

ters and requirements so as to meet the broad, often poorly defined,

objective of a space mission in a timely manner at minimum time and

risk.”.115 Dahmann and Gold define mission engineering as “deliberate

planning, analyzing, organizing, and integrating of current and emerg-

ing operational and system capabilities to achieve desired warfight-

ing mission effects.”.116–119 Considering the objectives and approach

tomission engineering, the insights to actual system health and perfor-

mance promises to be extremely fruitful, notably in systems with high

levels of redundancy that results in scalable performance characteris-

tics such as phased arrays or fiber laser weapon systems.

6.2 PLM

The use of MBPS or PLM are growing rapidly in the DoD as stake-

holders look for new ways to transform traditional logistics analytics

and processes, and use integrated models and analytics to drive bet-

ter decision making. Many traditional logistics planning processes are

limited to their use of antiquated processes based on transaction data.

PLM is an integrated system of tools that allow the modeling of a sys-

tem’s reliability, perform design trades, and model/adjust the sustain-

ment tail. DTs are a transformational data source for the implementa-

tion of PLM capability and make sustainment decisions based on the

materiel condition of deployed hardware—notably with prepositioning

of parts, training, and remote assistance as well as supporting variable

and dynamic sparing. The net effect will be the empowerment of stake-

holders to model the operational environment and adjust the logistics

posture and strategy quickly as the CONOPS evolves.

6.3 DTs for T&E

DTs offer significant value for the T&E of complex systems. Traditional

programs undergo rigorous T&E during acquisition but testing is exe-

cuted in discrete scheduled events. Performance characteristics are

rarely captured and analyzed on operational assets and operators are

not informed of a systems actual capability based on materiel condi-

tion. There is an enormous opportunity to deploy real-time T&E with

modern systemDTs that track andmonitor performance and deviation

from program requirements. This can enable a next-generation opera-

tional decision-making aid that informs operators of system ability to

support specific missions throughout an evolving conflict.

6.4 Risk-based decision making

Risk-based decision-making is an area of particular interest for future

DT work. As described in Section 2.5, DTs have a wide range of appli-

cations and use cases. Some programs may want the inclusion of mul-

tiple types of DT algorithms to make stronger decision making. Each

DT application may provide its own insights or recommendations to

system operators but unless they are somehow weighted and aggre-

gated, DT outputs will not be intuitive. The concept of risk-based deci-

sion making and risk aggregation is one area that will be valuable for

futureDTwork, as the topic provides insights onhow tomakedecisions

based on incomparable or incommensurable data types.

7 CONCLUSION

In conclusion, DTs offer an opportunity to revolutionize the operations,

support, and sustainment of deployed systems. Use cases of lever-

aging the DT to indicate performance and health characteristics of a

physical asset have been demonstrated in both industry and academia,

and there are enormous opportunities to develop strongermethodolo-

gies for conceptualizing, designing, and building DTs. This article has

demonstrated that the objectives and fundamental concepts of MBSE

and DTs are in agreement. Both intend to leverage integrated models

to support a system’s lifecycle.

Further this article has demonstrated that the nominal MBSE

approach followed by many development programs, notably for DoD

systems, assist with the architecture and framing of a PHM-centric

DT as well. By following this approach, DT fielding on initial deploy-

ment results in higher operational availability, reduced requirements
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for fielding spare parts, as well as performance indicating decision

aids.

Finally, this article has demonstrated even on program onset, there

is significant value in developing a DT, as the academic community

has well-established off-the-shelf prognostics tools that can be inte-

grated into new designs to maximize system availability. The com-

bination of these three positions makes it clear that sponsors and

stakeholders should be motivated to consider the employment of DTs

within their programs and this methodology is a natural approach for

implementation.
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