ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/259426248

Risk attitudes in risk-based design: Considering risk attitude using utility
theory in risk-based design

Article in Artificial intelligence for engineering design analysis and manufacturing - November 2012

DOI: 10.1017/5S0890060412000261

CITATIONS READS
18 568
4 authors:
Douglas Lee Van Bossuyt X Christopher Hoyle
Naval Postgraduate School »  Oregon State University
66 PUBLICATIONS 168 CITATIONS 104 PUBLICATIONS 537 CITATIONS
SEE PROFILE SEE PROFILE
Irem Y. Tumer Andy Dong
& Oregon State University The University of Sydney
268 PUBLICATIONS 2,403 CITATIONS 170 PUBLICATIONS 1,683 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

roject  NASA Ames Project View project

roiect  Metal Organic Responsive Frameworks View project

All content following this page was uploaded by Andy Dong on 06 January 2014.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/259426248_Risk_attitudes_in_risk-based_design_Considering_risk_attitude_using_utility_theory_in_risk-based_design?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/259426248_Risk_attitudes_in_risk-based_design_Considering_risk_attitude_using_utility_theory_in_risk-based_design?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/NASA-Ames-Project?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Metal-Organic-Responsive-Frameworks?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Douglas_Van_Bossuyt?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Douglas_Van_Bossuyt?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Naval_Postgraduate_School?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Douglas_Van_Bossuyt?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christopher_Hoyle3?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christopher_Hoyle3?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Oregon_State_University?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christopher_Hoyle3?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Irem_Tumer?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Irem_Tumer?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Oregon_State_University?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Irem_Tumer?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andy_Dong?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andy_Dong?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Sydney?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andy_Dong?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andy_Dong?enrichId=rgreq-5e9fc5fcd3221b77f3c31598e8f8f582-XXX&enrichSource=Y292ZXJQYWdlOzI1OTQyNjI0ODtBUzoxMDI5MzcwMTE0MjUyODJAMTQwMTU1MzUwNDIxOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (2012), 26, 393-406.
© Cambridge University Press 2012 0890-0604/12 $25.00
doi:10.1017/S0890060412000261

Risk attitudes in risk-based design: Considering risk attitude
using utility theory in risk-based design

DOUGLAS VAN BOSSUYT,! CHRIS HOYLE,' IREM Y. TUMER,! axo ANDY DONG?>

'Complex Engineered Systems Design Laboratory, School of Mechanical, Industrial and Manufacturing Engineering, Oregon State
University, Corvallis, Oregon, USA
ZFaculty of Engineering and Information Technologies, University of Sydney, Sydney, Australia

Abstract

Engineering risk methods and tools account for and make decisions about risk using an expected-value approach. Psycho-
logical research has shown that stakeholders and decision makers hold domain-specific risk attitudes that often vary be-
tween individuals and between enterprises. Moreover, certain companies and industries (e.g., the nuclear power industry
and aerospace corporations) are very risk-averse whereas other organizations and industrial sectors (e.g., IDEO, located
in the innovation and design sector) are risk tolerant and actually thrive by making risky decisions. Engineering risk
methods such as failure modes and effects analysis, fault tree analysis, and others are not equipped to help stakeholders
make decisions under risk-tolerant or risk-averse decision-making conditions. This article presents a novel method for trans-
lating engineering risk data from the expected-value domain into a risk appetite corrected domain using utility functions
derived from the psychometric Engineering Domain-Specific Risk-Taking test results under a single-criterion decision-
based design approach. The method is aspirational rather than predictive in nature through the use of a psychometric
test rather than lottery methods to generate utility functions. Using this method, decisions can be made based upon risk
appetite corrected risk data. We discuss development and application of the method based upon a simplified space mission
design in a collaborative design-center environment. The method is shown to change risk-based decisions in certain situ-
ations where a risk-averse or risk-tolerant decision maker would likely choose differently than the expected-value approach
dictates.

Keywords: Decision Support; Engineering Domain-Specific Risk-Taking Test; Risk Appetite; Risk-Based Design; Utility

Theory

1. INTRODUCTION

Risk is found throughout engineering design. Engineering
risk methods such as failure modes and effects analysis
(FMEA), fault tree analysis (FTA), and others are used across
the spectrum of complex system design to identify these risks.
In particular, such methods are designed to guide decision
makers to choose the least risky options, mitigate the largest
risks, and create risk-averse or fault-tolerant designs. Such an
approach works well for traditionally risk-averse sectors such
as the aerospace and nuclear power industries. However, not
all industries and enterprises thrive on risk aversion. Many of
the most successful Web 2.0 companies such as Google and
Facebook and product design companies such as IDEO have
become successful because they take risks that traditional,
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risk-averse companies are not willing to take. There is no
one correct level of risk attitude for all industries.

Many methods exist in engineering design to account for
risk such as functional failure identification propagation
(Kurtoglu & Tumer, 2008), risk in early design (Grantham-
Lough, Stone, & Tumer, 2007), or function failure design
method (Stone, Tumer, & Van Wie, 2005), FMEA (Stamanis,
2003). However, these methods do not account for risk appe-
tites of enterprises or individual decision makers. Research in
psychology has produced the well-respected Domain-Specific
Risk-Taking (DOSPERT) test, which enables risk appetite
determination in several different domains of daily life (We-
ber, Blais, & Betz, 2002). Recent advances created the Engi-
neering DOSPERT (E-DOSPERT) test, which has the goal of
categorizing and determining engineering-specific risk do-
mains (Van Bossuyt, Carvalho, Dong, & Tumer, 2011). The
present research seeks to find a link between the engineering
risk appetite information that the E-DOSPERT test provides
with traditional and widely used engineering risk methods.
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Specifically, this article presents a novel way to account
for risk appetite in risk-based design. A single-criterion deci-
sion-based design (DBD) approach is adapted by way of en-
gineering risk appetite utility functions that bring risk data
from the expected-value (EV) domain into a risk appetite do-
main appropriate to the enterprise or individual stakeholder.
The risk appetite utility functions are developed via E-DO-
SPERT test results rather than traditional lottery methods. By
viewing risk data through a risk appetite lens, stakeholders
and decision makers can make risk decisions with analytic
backing that would traditionally be justified with “gut feel-
ing.” An important distinction is drawn between appropriate
uses of lottery-derived risk utility functions and E-DO-
SPERT-derived risk utility functions. Lottery methods of
risk utility functions generation are suitable for later stage
conceptual system design and beyond, whereas the authors
advocate using E-DOSPERT-derived risk utility appetite
functions for early phase conceptual system design. Psycho-
metric tests such as E-DOSPERT are aspirational in nature,
whereas lottery methods are predictive of future decisions
(Pennings & Smidts, 2000). The method presented in this ar-
ticle specifically provides a means of aspiring to the intrinsic
risk appetite of the E-DOSPERT test taker rather than using
past performance as measured by lottery methods to predict
future performance. In the early phases of conceptual design,
it is more useful to aspire to create something new than to use
the same decision patterns as have been done in the past.

The method presented in this article can be used with any
type of risk to which a dollar figure can be attached. This ar-
ticle uses product-related risk examples. However, other
risks, such as those found in project management or else-
where, may also be used with this method.

It is important to note that this method does not claim to
produce a “right” or “wrong” decision. The suitability of
the decisions that can be supported with the method presented
in this article are based on the attitude of the decision maker as
defined by the decision maker’s decision criteria. There are
no right or wrong decision criteria but instead criteria that
are more or less important to the decision maker (Hazelrigg,
1998). The method developed in this article provides a novel
criteria that decision makers may use when making risk-based
decisions. As the case study demonstrates, decisions can have
different results when made based upon the information pro-
duced by this method.

Risk-averse decision makers and enterprises will find this
method useful in highlighting risks with higher certainty. A
risk-averse stakeholder tends to favor high certainty over
low certainty options. Likewise, risk-tolerant decision makers
and enterprises will find that identifying large risks will drive
potential innovation and profit (Dvir & Pasher, 2004). Thus,
this article develops a novel way to account for risk appetite in
risk-based design.

The method presented in this article holds significance for
intelligent decision support systems based upon the method’s
ability to inform the user of the preferred design choice, based
upon risk information, of the stakeholder for whom the user is
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designing. In this way, partial automation of the engineering
risk decision-making process can be realized. In addition, the
method can be used by an engineer to support their own de-
cision-making process by providing quantitative backing to
“gut feeling” decisions. Moreover, the method is intended
to be used as a real-time decision support system rather
than a postdesign confirmatory tool. The method presented
in this article can be automated if decision-maker risk atti-
tudes are known. This would be useful in automated design
trade studies and other design automation applications where
decision-maker input is desired but where each design itera-
tion does not need fresh decision-maker input.

In the following sections, background is provided in sev-
eral relevant fields for the proposed method. Coverage in-
cludes design trade studies, risk analysis in collaborative de-
sign centers (CDCs), the psychology of assessing and judging
risk, DBD, and risk-based utility theory. The novel method of
accounting for risk appetites in risk-based design is then de-
veloped and demonstrated using an illustrative example. A
case study based upon a simplified satellite conceptual design
development and selection process is presented next to em-
phasize the benefits of this new method in a realistic complex
design setting. The article concludes with a discussion of the
benefits and drawbacks of the proposed method, and suggests
future work to expand the method.

2. BACKGROUND

The method presented in this article makes use of several do-
mains of engineering and psychology. This section reviews
the topics of engineering risk, trade studies, the psychology
of assessing and judging risk, and DBD, each of which is
used in developing the risk appetite utility function method.

It is important to define the terms “risk,” “utility,” “riski-
ness,” “value,” and “uncertainty.” Risk can hold many differ-
ent meanings but, unless otherwise noted, for the purposes of
the method developed in this article, “risk” is defined as
the probability of uncertain events (Jones, 2005) and the
values of potential outcomes. A certainty equivalent value
(CE(V)), based upon utility theory, is developed and found
in conjunction with the probability of an outcome in order
to find the equivalent value of a specific risk. This is analo-
gous to the classical engineering context in which risk can
be defined as the probability of occurrence multiplied by
the severity of the outcome of the event, but is more closely
aligned with the ISO 31000:2009 definition of risk, which de-
fines risk as the effect of uncertainty on objectives (Standards
Australia New Zealand, 2009). In this article, “utility” is de-
fined as a measure of satisfaction of a choice or result
(Keeney & Raiffa, 1993). In the context of finance, “riski-
ness” refers to the riskiness of an option, which is equated
to its variance. However, in psychological risk-return models
perceived riskiness is treated as a variable that can differ be-
tween individuals as a function of the context and content of
the decision choice (Weber et al., 2002). “Value” is defined as
the worth of a decision, outcome, good, or service, and this is
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often given a monetary designation. This article uses the dol-
lar ($) as a monetary value designator. Finally, “uncertainty”
is defined as the potential of more than one outcome, state, or
result where the probabilities are ill defined (Hubbard, 2007).
It should be noted that engineers often group together related
concepts such as reliability (IEEE, 1990), robustness (Du &
Chen, 2000), and uncertainty (Martin & Simpson, 2006)
with the strict definition of risk into a meta-risk category
that is also referred to as “risk.”

2.1. Trade studies and different priorities

Design trade studies are found throughout the design process.
They are often employed in creating conceptual complex sys-
tem designs. Trade studies can be used to create many potential
designs quickly through automated software packages such as
ModelCenter (http:/www.phoenix-int.com) or Advanced
Trade Space Visualization (Stump, Lego, Yukish, Simpson,
& Donndelinger, 2009) as part of ModelCenter. Trade studies
are also used by teams of people to conduct manual trade study
sessions (Oberto et al., 2005). Automated trade studies can also
be performed by computers using conditions and bounds set
by users. Many thousands of conceptual designs can be
quickly created with an automated trade study. Manual trade
studies are conducted by groups of system experts where
only one or a handful of conceptual designs will result.

Trade studies are based upon the search for maximum sys-
tem utility. Trade-offs are made between system design vari-
ables in order to achieve maximum utility (Papalambros &
Wilde, 2000). This is represented by max f( U ), where U rep-
resents relevant system utility metrics. System utility metrics
are to be chosen by design stakeholders. In the case of auto-
mated trade studies, different stakeholders will have different
design preferences. The most preferred design of one en-
gineer will most likely not be the most preferred design of an-
other engineer. In practice, the literature provides little guide-
lines on how to create utility functions with appropriate
selection criteria for different design situations, such as de-
sign of high-risk space exploration.

CDC:s often will perform manual trade studies as part of the
design process. The most cited example of a CDC is Team-X
that is housed in the Project Design Center at the Jet Propulsion
Laboratory and develops conceptual spacecraft mission designs
(Oberto et al., 2005). In such manually conducted trade studies,
subsystem experts often disagree over which tradeable param-
eters are the most important (NASA, 1995; Ross et al., 2004;
Federal Aviation Administration, 2006). A variety of methods
are available to resolve design decision conflicts in both auto-
mated and manual trade studies (Russell & Skibniewski,
1988; Ji et al., 2007). However, these methods do not take in-
dividual or enterprise-level risk appetites into account.

2.2. Risk analysis tools

Many methods exist to analyze and account for engineering
risk in the design process. Examples are reliability block dia-
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gram (International Organization for Standardization, 1997),
probabilistic risk assessment (Villemeur, 2000), FMEA (US
Department of Defense, 1980), and FTA (International Elec-
trotechnical Commission, 1990). Other methods such as
functional failure identification propagation (Kurtoglu & Tu-
mer, 2008), function failure design method (Stone et al.,
2005), and risk in early design (Grantham-Lough et al.,
2007) are being actively developed in academia and will
see industrial deployment in the future.

Several tools have been developed to support risk analysis
in trade studies for CDCs. Team-X uses the Risk and Ratio-
nale Assessment Program, a probabilistic risk assessment
based assessment software package (Meshkat, 2007). The
Risk and Rationale Assessment Program tool is used to cap-
ture unusual risks that are identified during trade study ses-
sions. One engineer is tasked with cataloging these risks
and, with the assistance of stakeholder subsystems engineers,
develops likelihood and impact assessments and mitigation
methods with associated costing information. Other risk anal-
ysis programs and methods are under development and in use
by other CDCs.

Methods such as FTA and FMEA and tools such as trade
studies commonly deployed in industrial settings and re-
viewed in the previous section view risk as an EV choice.
For example, if an engineer must make a decision between
one risk that has a 1% chance of occurrence and has a conse-
quential cost of $10,000 and another risk that has a chance of
0.1% of occurrence and a consequential cost of $100,000, en-
gineering risk methods would indicate that both risks are
equal with regard to EV. Therefore, either can be chosen
with the same EV outcome. However, this ignores individual
and company risk attitude. The method presented in this arti-
cle allows for individual and enterprise risk appetites to be ex-
pressed during the risk decision-making process.

2.3. The psychology of assessing and judging risk

Risk plays an integral role in engineering design. Innovative
design firms embrace risk as essential to their success. In con-
trast, some industries (e.g., aerospace and nuclear power) are
very averse to risk. Research in risk trading in engineering de-
sign shows that different engineers have different opinions of
what makes an acceptable risk (Van Bossuyt et al., 2010).
There is no clear, single correct level of acceptable risk for
all situations or all people.

Risk is classically defined in psychology as the parameter
that differentiates different individuals’ utility functions
(Pratt, 1964). The utility function of individuals is generally
expressed as a quadratic, logarithmic, or exponential function
(Keeney & Raiffa, 1993). This classic expected utility (EU)
approach to risk theorizes that an individual can be modeled
choosing between risky options as the function of the return
of the options, the probability of the options occurring, and
the risk aversion of the individual (Bernoulli, 1954). Figure 1
shows a risk-tolerant utility function for money. Within the
EU framework and other related methods (Kahneman &
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Fig. 1. Risk-tolerant utility function for money. [A color version of this figure can be viewed online at http:/journals.cambridge.org/aie]

Tversky, 1979), the function of an individual’s utility func-
tion denotes the individual’s risk attitude as either risk averse
(i.e., someone who does not like to take risks), risk neutral
(i.e., someone who takes necessary short-term risks to deliver
long-term outcomes), or risk tolerant (i.e., someone who is
comfortable with handling larger risks if necessary; von Win-
terfeldt & Edwards, 1986; Hillson & Murray-Webster, 2007).
The theory of risk attitudes in the context of EU has been
challenged by the twin issues of inconsistent risk profiles
across risk domains and cross-method utility instability (Slo-
vic, 1964; MacCrimmon & Wehrung, 1986, 1990; Schoe-
maker, 1990). Different risk-averse or risk-tolerant classifica-
tions often result when different methods are used to measure
people’s utility (Slovic, 1964). Moreover, individuals are not
consistent across different risk domains. Although a person
might be risk-averse making financial decisions, they could
be risk seeking in social situations (Schoemaker, 1990).
Other methods have been developed within psychology to
make up for the shortcomings of the EU framework. For in-
stance, the risk-return framework of risky choice models peo-
ple’s preference for risky options based upon a trade-off be-
tween the EV and the riskiness of the choice. This is
analogous to the way most engineering risk methods differ-
entiate risk choices. Psychology extends this to treat per-
ceived risk as a variable that differentiates individuals based
upon content and context interpretations. The framework al-
lows people to have different risk preferences in different do-
mains (Weber et al., 2002) and accounts for desiring risk in
some areas but preferring caution in others through the con-
cept of perceived risk attitude. Variances in perceived risk at-
titude are viewed to be the result of differences in the percep-
tion of risks and benefits between a decision maker and an
outside observer. For instance, in the management field, man-

agers have less optimistic perceptions of risk than entrepre-
neurs (Cooper et al., 1988). The risk-return framework shows
that a person’s perception of risk affects the choices that per-
son will make.

In order to assess risk perceptions and attitudes within dif-
ferent domains, the DOSPERT test and related scale were
created (Weber et al., 2002). Six independent domains were
identified, including the ethical, investment, gambling,
health/safety, recreational, and social domains within which
the majority of day-to-day activities can be categorized.
The DOSPERT test is seeing widespread adoption in psy-
chology. The E-DOSPERT test (Van Bossuyt et al., 2011)
was proposed recently as a method for determining engineer-
ing-specific risk attitudes as defined by four engineering risk
domains, including risk identification, analysis, evaluation,
and treatment (Standards Australia New Zealand, 2009).
The E-DOSPERT scale has been shown to reliably measure
general engineering risk aversion and risk-seeking attitudes.
It can also measure risk-seeking and risk-aversion attitudes
in the risk-identification and risk-treatment domains. Addi-
tional research is underway in order to fully measure the
four engineering risk domains. The DOSPERT and E-DOS-
PERT tests provide evidence of the need for a method to
make risk decisions based on tolerant or averse risk appetites.

2.4. DBD

To address the growing recognition within the industry and
engineering research community (Shah & Wright, 2000;
Wassenaar & Chen, 2003; Dong & Wood, 2004; Lewis,
Chen, & Schmidt, 2006) that decision making is a fundamen-
tal part of the design process, the DBD framework was devel-
oped. A decision-theoretic methodology is utilized to select
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preferred product design alternatives and set target product
performance levels. A single selection criterion, V, in the
DBD implementation represents the economic benefit to the
enterprise (Wassenaar & Chen, 2003). This approach avoids
the difficulties of weighting factors and multiobjective opti-
mization, which can violate Arrow’s impossibility theorem
(Hazelrigg, 1996). A utility function, U, which expresses
the value of a designed artifact to the enterprise when consid-
ering the decision maker’s risk attitude, is created as a func-
tion of the selection criterion, V. A preferred concept and
attribute targets are selected through the maximization of en-
terprise utility.

In order to effectively use the single-criterion approach to
DBD, the selected criterion must be able to capture all of the
issues involved in the engineering design such as system fea-
tures, costs, risks, physical restrictions, and regulatory require-
ments. The single criterion should allow both the interests of
the users and producers of the system to be considered. In
most industrial cases, the most universal unit of exchange is
money. Material, energy, information, faults, and time can all
be assigned a monetary value. This can be seen in many design
decision-making processes and is practiced widely in industry.

One use of single-criterion DBD developed by Hoyle et al.
(2009) employs profit as the criterion in a method to deter-
mine optimum system configuration for integrated systems
health management. The determination of system profit is
made from the product of system availability and revenue,
minus the summation of cost of system risks, and the cost
of fault detection. This method can determine optimal inte-
grated systems health management while also determining
the optimum detection/false alarm threshold and inspection
interval. Using the method has been found to increase profit
by 11%, decrease cost by a factor of 2.4, and increase inspec-
tion intervals by a factor of 1.5 (Hoyle et al., 2009).

2.5. Risk-based utility theory

One approach to analyzing choice outcomes from a nonneu-
tral EV perspective is to use risk-based utility theory (Kahne-
man & Tversky, 1979). The utility of a range of probabilistic
outcomes can be determined in order to aid decision makers.
This is done by translating monetary outcomes to utilities. A
risk-tolerant decision maker’s higher intrinsic value for risk-
ier decisions skews the utility of those decisions higher than a
risk-neutral or risk-averse decision maker’s utility of the same
decisions. Figure 2 shows that for a normal distribution of
outcomes, a risk-tolerant person’s utility distribution will
shift to be more heavily skewed toward higher-value out-
comes. Utility distributions for risk-averse individuals will
skew more heavily toward lower-value outcomes, as can be
seen in Figure 3. The risk neutral state, shown in Figure 4,
does not weight outcomes in either direction along the utility
axis. As can be seen in Figures 2 through 4, different utilities
are found based upon a decision maker’s risk appetite.
Currently accepted methods of developing utility risk func-
tions, such as those in Figures 2 through 4, require a series of
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Fig. 2. Risk-tolerant utility function. [A color version of this figure can be
viewed online at http:/journals.cambridge.org/aie]

lotteries to be conducted (Kahneman & Tversky, 1979). Sev-
eral sets of paired choices are presented sequentially to an in-
dividual. These are often presented as lotteries in which a par-
ticipant selects amongst paired probabilistic alternatives. A
utility-risk function is then fitted to the lottery results. Com-
mon functions include quadratic, logarithmic, and exponen-
tial functions (Keeney & Raiffa, 1993). In currently accepted
methods of risk utility function generation, the choice of
which form a risk utility function should take is at the discre-
tion of the decision maker and based upon results of lotteries.
The scale of the value axis of the utility function is set to the
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Fig. 3. Risk-averse utility function. [A color version of this figure can be
viewed online at http:/journals.cambridge.org/aie]
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Fig. 4. Risk-neutral utility function. [A color version of this figure can be
viewed online at http:/journals.cambridge.org/aie]

minimum and maximum limits of the values used to conduct
the lotteries.

Developing and conducting lotteries is time consuming
and not intuitive to end users (Pennings & Smidts, 2000).
In addition, the utility functions derived from lotteries are
only valid for the range of values used in the lottery. There-
fore, although useful in many areas, lottery-based methods
of utility risk function generation are not always useful. Pen-
nings and Smidts (2000) investigated using psychometric
risk-attitude test results to create risk functions for Dutch
hog farmers to predict individual farmer behavior in hog fu-
tures’ markets. The results of the research found lotteries to be
the most accurate method of predicting behavior in the con-
text of the hog futures’ market. However, the hog farmers’
self-reported behavior predictions were most closely corre-
lated with the psychometric risk-attitude test results. The
farmers also indicated that the psychometric risk-attitude
test was more understandable than the lottery method.

In this article, the authors postulate that, although lottery
methods of utility risk function generation are satisfactory
for many DBD situations, they are not as useful for early-
phase conceptual design. Lottery-based risk functions are
only valid over the range of values used in the initial lotteries.
In the case of early-phase conceptual design, the range of val-
ues might not be fully known or could change during the de-
sign process. Rerunning lotteries to create expanded risk
functions would quickly become burdensome to the practi-
tioner. Further, in cases where utility risk functions are devel-
oped based upon client or customer risk appetites, conducting
multiple lottery sessions is impractical. Finally, as hinted at in
Pennings and Smidts’ (2000) research, lotteries do not closely
match what individuals believe they will do. However, the ac-
tions of individuals more closely align with the predictions of

D. Van Bossuyt et al.

lottery methods than with self-reported methods. This can be
interpreted as a disconnect between what individuals aspire to
do and what they actually do. Utility risk functions generated
by alternative methods could potentially provide new insights
for practitioners that will allow decisions to be made based
upon aspirations rather than upon past performance, as is
the case with lotteries.

In summary, several methods exist and are in use in the
risk-based design approach to determine engineering risk,
manage identified risks, and make decisions based upon
that risk. However, these methods approach risk from an
EV choice perspective in which decision makers and stake-
holders are expected to be risk neutral. Utility functions,
which account for risk attitude, have been used in the DBD
framework; however, these functions have generally been de-
veloped for consumer products, where there is a trade-off be-
tween product features, price, and demand, not risk-based de-
sign applications. Although utility risk functions can be
useful for risk-based design applications, they are not satis-
factory for early-phase conceptual design problems. As has
been shown with the DOSPERT and E-DOSPERT tests, peo-
ple can be risk-averse, neutral, or tolerant. Therefore, a
method is needed that can support decision making for differ-
ent risk appetites within the risk-based design paradigm. Psy-
chometric risk attitude test-generated utility risk functions
hold promise for use in early-phase conceptual system de-
sign.

3. METHODOLOGY

Risk-based design methods are used to make decisions about
risk in system design. Risk analysis tools such as FMEA and
FTA are commonly used to evaluate system safety and reduce
the likelihood of failure. The risk-based design methods take
an EV approach toward all engineering risk domains. How-
ever, design stakeholders often have domain-specific risk at-
titudes that are not risk neutral. The authors propose a new
method to determine the true value of risk decisions using
utility theory and the E-DOSPERT risk appetite research.
This method translates engineering risk method data into util-
ity functions, the line along which a value can be translated
into a utility on a two-dimensional plot, using the single-cri-
terion DBD approach.

To show how risk appetite can be ignored in standard util-
ity calculations, the risks in Equations 1 and 2 are equal in the
context of risk-based design. In Equation 1 a 1% chance ex-
ists that a risk costing $10,000 to return the system to a nom-
inal operating state will occur, whereas in Equation 2 there is a
0.1% chance of realizing a risk that costs $100,000 in order to
return the system to a nominal state. Equation 2 represents a
case in which additional system complexity has been added
to the base design of Equation 1, which has lowered the prob-
ability of losing system functionality but has increased the re-
pair cost in the event of a fault. Both risks have an EV of
—$100. Therefore, a decision maker using risk-based design
would have no guidance in choosing between the two de-
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signs. The designs are of equal value using the EV approach.
Ry = 0.99(0) + 0.01(—$10,000) = —$100, (1)
R> = 0.999(0) + 0.001(—$100,000) = —$100. 2)

In contrast, taking into account a risk appetite can change
the resulting valuation. Risk-based design instructs decision
makers that the choice between the risk in Equation 1 and
the risk in Equation 2 does not matter because both outcomes
have the same EV. However, a risk-averse decision maker
will choose the design in Equation 2 in order to have more
certainty about the likelihood of occurrence of the risk. A
risk-tolerant decision maker is not as concerned with cer-
tainty and will choose the design in Equation 1 due to the
lower financial consequence. The example in Equations 1
and 2 has a clear choice outcome for risk-averse and risk-tol-
erant decision makers.

Equations 1 and 2 are of the form R, =B+ A,, + A1 +
-+ 4 A,u1x, Where B is the probability of benefit x outcome
of benefit and A, is the probability of risk,,, x outcome
of risk,, . The benefit and risk probabilities all total 100%.
This research is only interested in risks and their costs. There-
fore all benefits are considered to be identical between risk
choices, namely, the full system benefit is realized when
the system is not in a fault state and is equal among all design
variants. For the purposes of this article, the outcome of the
benefit is taken to always be 0.

Although the example in Equations 1 and 2 has a clear
choice outcome for risk-averse and risk-tolerant decision
makers, the design choice presented in Equations 3 and 4 is
less clear for decision makers that are not risk neutral. Ra-
tionalizing choosing the design characterized by Equation 3 is
impossible under risk-based design. However, the risk-toler-
ant decision maker might still choose the design with a larger
negative EV because she is more concerned with the lower fi-
nancial consequence than the certainty of the outcome.

Ry = 0.99(0) + 0.01(—$15,000) = —$150, 3)
Ry = 0.999(0) + 0.001(—$100,000) = —$100. 4)

The risk-tolerant decision maker’s higher intrinsic value
for the riskier decision in this example can be examined
through the lens of utility theory. Figures 2, 3, and 4 demon-
strate how risk attitude can affect the utility of a value distri-
bution. Figure 2 shows that for a normal distribution of out-
comes, a risk-tolerant person’s utility distribution will shift
to be more heavily skewed toward higher value outcomes.
Utility distributions for risk-averse individuals will skew
more heavily toward lower value outcomes, as can be seen
in Figure 3. The risk-neutral state, shown in Figure 4, does
not weight outcomes in either direction along the utility axis.

Utility functions derived from discrete outcome distribu-
tions can also be affected by risk attitudes. The utility for a
system feature with two potential discrete outcomes takes
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the form of Equation 5 where u(s) represents the system util-
ity, po is the probability of the first outcome, u(xy) is the util-
ity of the first outcome, (1 — pg) is the probability of the sec-
ond outcome, and u(xy) is the utility of the second outcome.

u(s) = po x ulxy) + (1 — po) X ulxy). (5

To explicitly show how taking risk appetite into account
can change resulting valuation, a generic utility problem
where risk is represented as a dollar figure is shown in Equa-
tion 6. Figure 5 was developed via a series of lotteries in
which the minimum value is $250 and maximum is $1,050;
it provides a risk-averse quadratic utility function. As was dis-
cussed in Section 2.5, although lottery-generated risk func-
tions are appropriate for many situations, the authors postu-
late that they are not appropriate for early-phase conceptual
complex system design.

u(s) = 0.4 x u($900) + 0.6 x u($400). (6)

Determining the utility of each potential outcome is dem-
onstrated in Equation 7, in which the utility of $900 is found
to be 0.91 via inspection of the utility function, as shown in
Figure 5, and the utility of $400 is found to be 0.35 from
the risk utility function as demonstrated in Figure 5. These
utilities are then multiplied by their respective probabilities
and summed together to find the overall system utility, u(s)
= 0.57, for a risk-averse decision maker. Reversing the pro-
cedure, a utility of 0.57 produces a risk-adjusted value of
u~! = $540, whereas a neutral utility function results in a
risk-adjusted value of u~! = $600. This clearly shows that
using a risk appetite function in a utility function results in
a different valuation of the system than would be found with-
out using a risk appetite function.

u(s) = 0.4 x (0.91) + 0.6 x (0.35) = 0.57. @)

As previously discussed, although risk functions generated
using lottery methods are useful in many situations, early-
phase conceptual design can benefit from an alternative
method. The authors propose using risk functions generated
from E-DOSPERT test results. Based upon the findings of
Van Bossuyt et al. (2011), the 25-question E-DOSPERT
test provides sufficient statistical reliability to determine gen-
eral engineering risk tolerance or risk aversion. The mean of
the 25-question instrument is proposed by the authors to be
the most appropriate metric for use with risk function devel-
opment. The E-DOSPERT makes use of a 5-point Likert
scale, with 1 corresponding to very unlikely and 5 correspond-
ing to very likely. A score of 3 corresponds to the neutral an-
swer of not sure. Using the 25 risk-tolerant questions in the
E-DOSPERT test, a mean score of 3 indicates a neutral risk ap-
petite, a mean score of 5 indicates extreme risk tolerance, and
a mean score of | indicates an extremely averse risk appetite.
An individual engineer, customer, or stakeholder’s E-DO-
SPERT test result is used to generate utility functions. Note
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Fig. 5. Risk-averse quadratic utility function developed using the lottery method. The value of the potential outcomes is translated via the
risk averse risk function to the utility domain. The two utilities are then combined using the generic Equation 5, as applied in Equation 7,
and translated back through the risk averse function to find the risk-adjusted value of $540. A value of $600 is found using the risk neutral
utility function. [A color version of this figure can be viewed online at http:/journals.cambridge.org/aie]

that multiple E-DOSPERT test results cannot be combined
due to Arrow’s impossibility theorem (Arrow, 1950).

In this research, the authors suggest that an exponential
function is an appropriate utility risk function to use with psy-
chometric risk scale test results. The function may be either of
the monotonically increasing or decreasing exponential type
(Kirkwood, 1997). An exponential function was chosen over
other potential functions because it is believed that practition-
ers will be either constantly risk averse or risk tolerant during
the early phases of conceptual system design. In one study
where a risk survey was compared to the lottery method, it
was found that risk functions generated by the lottery method
were exponential in nature. Moreover, there was reasonable
correlation between the risk survey results and lottery method
results (Pennings & Smidts, 2000). Research is ongoing in
this area to verify that this holds true for the E-DOSPERT.

The choice of an exponential function also allows the direct
use of E-DOSPERT test results in the creation of a risk func-
tion (Keeney & Raiffa, 1993). The monotonically decreasing
exponential utility function developed by Kirkwood (1997)
that is shown in Equation 8 is used throughout the rest of
this article. Here, U(V') represents utility of the potential val-
ue(s) and CE(V) represents the risk-adjusted value of the po-
tential values of interest, otherwise known as the certainty
equivalent. The maximum possible value is Vi,ax. Note that
Vimax need not be the maximum value of the range of potential
values of interest, but can be a larger number than the maxi-
mum potential value of interest. This property is useful in sit-
uations in which a larger maximum value is possible than the
set of potential values currently being investigated or when
multiple sets of potential values, representing multiple sets
of outcomes of a decision choice, span different numerical

ranges. Likewise, Vi, 1s the minimum possible value, which
need only be smaller than or equal to the smallest potential
value of interest. Note that Vi, can either be a positive or
negative number. The risk-tolerance/aversion coefficient of
the utility function is Rr/s. In order to convert an E-DO-
SPERT mean score (EDSyean) to an Ry value, Equation 9
was developed by the authors based upon the work of Kirk-
wood (1997), Howard (1988), and McNamee and Celona
(1990). In Equation 9, Rs is a scaling factor. Several different
rules of thumb based upon financial measures are available to
determine Rg, such as finding a sufficient Rgp that Rt/ will
be roughly 6% of net sales, a 100%—150% of net income, and
about one-sixth of equity (Howard, 1988). These rules of
thumb have been found useful in the oil and chemical indus-
tries (Howard, 1988). Additional suggestions are given by
Kirkwood (1997) and McNamee and Celona (1990). It is
important that the practitioner select an Rgp that is appropriate
to their industry, company, and the specific analysis being
performed. It is beyond the scope of this article to provide
strict guidance on domain and situation-appropriate Rsp val-
ues. It is also beyond the scope of this article to judge if the
practitioner’s level of expertise can influence the selection
of appropriate rules of thumb. For the examples and illustra-
tions presented in this article, Rsg = 60 will be used to dem-
onstrate the new method for determining the true value of risk
decisions using utility theory and the E-DOSPERT test.

Vmax -V 1
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The inverse of Equation 8, shown in Equation 10, is used to
calculate the certainty equivalent. In the special case of an E-
DOSPERT test result, in which the test taker is found to have
a perfectly risk-neutral risk appetite, Equations 11 and 12 are
used to generate the risk function and find the risk-adjusted
value of the potential values. Examples of monotonically in-
creasing exponential utility functions can be found in Kirk-
wood (1997). Other risk utility functions of potential interest
to the practitioner are available in Keeney and Raiffa (1993).
A series of risk functions generated in MATLAB using Equa-
tion 8 from E-DOSPERT mean scores of EDS,can = 2.8, 2.9,
3.0, 3.1, 3.2, Vipax = 1000, Vyax = 0, and Rsg = 60 is shown
in Figure 6.

Vmax
CE(V) = Ry/a X log (—U(V) X (exp (R ; )
T/A

_exp(Vmin) _exp<Vmax))) (10)
Rr/a Rr/a
Vinax =V
uw) = R 11
( ) Vmax Vmin ( )
CE(V) = U(V) X (Vimin — Vinax) + Vinax- (12)

In order for engineering risk methods to make use of risk
appetite functions in utility theory, risk metrics generated
by the various engineering risk methods must be translated
into an easily comparable unit of measure. The authors advo-
cate using consequential cost as it is a convenient and easily
understood unit of measure. Therefore, in order to use this
risk appetite utility method, both consequential cost and
probability must be determinable for the risks identified by
engineering risk methods. Standard engineering tools used
in the design process often contain the necessary risk infor-
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mation, but require translation into the appropriate probability
and cost metrics. For example, translating risk information
from an FMEA into probability and consequential cost is rel-
atively straightforward. Probability can be derived from the
occurrence metric. In the case of a purely linear occurrence
metric scale, the percentage chance of failure can be found
by multiplying occurrence, Occ, by an appropriate factor,
Ocs. When the occurrence scale is not linear, an appropriate
function can be used to translate the occurrence metric into
a probability value. In the case of a linear occurrence metric
scale, Ocy should be determined by dividing 100 by the result
of subtracting the low (Occpy,,) end of the occurrence metric
scale from the high (Occp,x) of the scale, as shown in Equa-
tion 13. Probability, Py, can then be determined by Equation
14 where P;_., represents the complete set of probabilities
under consideration.

100
Ocf=—""7-—/7—, 13
‘r Occiax — OcCmin (13)
Occ x Ocy
100
Pyp=1—— . 14
0 ZP]*?V[ ( )

Consequential cost, representing value, can be determined
in a variety of manners. The authors suggest that consequen-
tial cost should be determined by the cost to return the system
to a nominal state if the risk occurs. In the event that conse-
quential cost cannot be directly determined, a summation of
the severity and detection metrics can be used as an analogue
metric to consequential cost.

Table 1 provides a simplified FMEA for a complex system
design with three identified risks and the consequential cost
of each risk. Decision maker A has been tasked with deciding
which risk is the most important to fix. Decision maker A has
arisk-averse appetite where EDS e, = 2.88. The generalized
form of Equation 5 is used in this example by setting po equal
to Equation 14 where Occpax = 10, Occpin = 0, Ocy = 0.1,
Xhigh = 0, Xlow = V(Rn), Vmin = $250, Vmax = $1,050, and
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Fig. 6. Monotonically decreasing exponential risk utility functions developed using Equation 8, where EDScan = 2.8, 2.9, 3.0, 3.1, and
3.2; Rsg = 60; Vipax = 1000; and Vi, = 0. [A color version of this figure can be viewed online at http:/journals.cambridge.org/aie]
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Table 1. Simplified failure mode and effects analysis example for decision-maker A

D. Van Bossuyt et al.

Risk Function Severity Occurrence Detection RPN Conseq. Cost
R, Funct 1 7 3 4 84 $450
R, Funct 2 4 5 8 160 $300
R3 Funct 3 2 8 3 48 $650

Note: RPN, risk priority numbers.

Table 2. Simplified failure mode and effects analysis for design 2 for decision-maker B

Risk Function Severity Occurrence Detection RPN Conseq. Cost
R, Funct 1 5 4 4 80 $400
Ry Funct 2 6 5 7 210 $700
R3 Funct 3 3 2 3 18 $200

Note: RPN, risk priority numbers.

Rsr = 20. Using a risk-averse utility function generated from
Equation 8 and Equation 5, the risk-averse decision maker A
discovers that the most desirable certainty equivalent choice
is CE(Ry) = $0.8909, whereas CE(R;) = $1.1292 CE(R,)
=$1.1292, and CE(R3) = $2.9184. Therefore, the risk-averse
decision is to mitigate the R risk as it has the lowest certainty
equivalent value.

This method can also be used to compare between different
designs. For instance, using Table 1 as design 1 and Table 2
as design 2, a risk-tolerant person, decision maker B, with an
E-DOSPERT mean score of EDS can = 3.15, can determine
which design is more preferred. Using the monotonically de-
creasing exponential risk function of Equation 8 with Vi,,x =
$1,000, Vmin = $0, OCCmaX = 10, OCCmin = 0, OCf = 0.1, RSF
= 60, Xnignh = 0, and Xjo,, = V(R,), the utilities of risks, prob-
abilities, system utilities, and risk-adjusted values are found
as shown in Table 3. Equation 15 is then used to find the
overall certainty equivalents (CE) of the two designs where
CE,(R,) is the risk-adjusted value of the individual identified

Table 3. Utility of risk, probability, and risk-adjusted value
data for design 1 and design 2 risks for decision-maker B

risk, R,,. Each of the risks identified in the FMEA presented in
Tables 1 and 2 is an independent risk, and thus the total risk is
simply the sum of the individual risks. Equation 15 is used
rather than Equation 10 because each of the risks identified
in the FMEA presented in Tables 1 and 2 is an independent
risk. Applying Equations 8 and 15 shows that the risk-tolerant
decision maker B with an EDS,can = 3.15 would choose de-
sign 1 as it has the smallest certainty equivalent. Decision ma-
ker C who has an EV risk neutral decision making criteria
would find design 1 to have CE = $8.05 and design 2 to
have CE = $5.5000, and therefore would choose design 2 be-
cause it has a lower certainty equivalent than design 1.

CE(Row) = CE((R) + - - - + CE,(Ry). 1s)

4. IMPLEMENTATION AND TESTING

An illustrative case study is developed in the following sec-
tion. The SuperNova/Acceleration Probe (SNAP) mission
trade study (Gerber, 2002) performed by Team-X provides
the bulk of the background information necessary for this
case study. Additional material comes from the Space Mis-
sion Analysis and Design book by Wertz and Larson
(1999). Costing and risk data are simulated for illustrative
purposes only and should not be used beyond this case study.
The SNAP mission’s purpose is inconsequential in the dem-
onstration of the method presented in this article. Further in-
formation on the SNAP mission can be found in Gerber

The SNAP mission was intended to investigate the nature
and origin of “dark energy” acceleration and expansion of
the universe. The experiment was designed to precisely mea-
sure the history of the universe’s expansion from the present
day back to approximately 10 billion years in the past. Plans

Utility of System Certainty
Risk Risk Probability Utility Equivalent
Design 1
Ry, 0.0024 0.0030 0.9994 $2.4885
Ry, 0.0045 0.0050 0.9995 $2.2278 (2002) for those interested.
Rs, 0.0051 0.0080 0.9971 $12.846
Risk-adjusted value total: $17.5623
Design 2
Ry, 0.0034 0.0040 0.9994 $2.7398
Ry, 0.0029 0.0050 0.9979 $9.3979
R;, 0.0020 0.0019 0.9999 $0.5186

Risk-adjusted value total: $12.6563

called for a satellite in a high earth orbit on a 4-year mission to
study the brightness of la-type supernovae and the redshift of
la-type supernova host galaxies (Gerber, 2002).
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Table 4. Simplified case study failure mode and effects analysis of SuperNova/Acceleration Probe power and attitude control
subsystems
Cons.
Risk Function Failure Mode Effects Sev Occ. Det. RPN Recom. Action Cost
R, Spacecraft Excessive jitter Long exposure photos are 7 1 4 112 Increase reaction wheel $30M
pointing blurry size
Ry Energy storage Ni-H2 battery Degraded battery performance 9 2 7 126 Use redundant batteries $20M
cell fails and possible loss of mission or replace with Li-
ion battery
R;, Data storage Insufficient Loss of science data if 5 5 2 30 Add second solid state $15M
storage space downlink is missed recorder
R3, Data storage Insufficient Loss of science data if 5 5 2 30 Add additional ground $23M
storage space downlink is missed station
R, Ground station Missed downlink Fail to receive data due to rain 4 5 4 80 Build additional $25M

ground station

Note: RPN, risk priority numbers.

Several risks were identified in the SNAP mission report.
This article makes use of and expands upon potential risks
in the power and attitude control subsystems. Table 4 details
several risks that will be used in the remainder of this article.

During the course of the CDC trade study session, the risks
outlined in Table 4 were identified. Risks R; and R, are po-
tential threats to mission success. Risks Rz, and R, are
threats to the level of science data that can be returned from
the spacecraft but will not end the mission completely. The
Rj3, and Rj, risks identify the same risk and propose two dif-
ferent solutions, and R3, also presents the same solution as the
solution for Ry.

In order for the SNAP mission proposal to be considered
for further development funding, it must meet a specific
cost cap. In this fictitious example, the mission proposal is
$40 million away from reaching the cost cap. Not all of the
identified risks can be mitigated under this cost cap. Based
upon the risk priority numbers of the four identified risks,
R, should be addressed first. However, this would not leave
enough funds to address R;, the next largest risk. In addition,
the customer believes that severity of R; is overstated and
wants to take a more risk-tolerant stance on R; while address-
ing some of the science data concerns of R3 and R4 within the
limited resources available.

Table 5. Probability and risk utility data for identified risks
in the SuperNova/Acceleration Probe mission

System Certainty
Risk Utility of Risk Probability Utility Equivalent
R 0.0006 0.0001 1.0378 $0.1681
Ry 0.0018 0.0020 1.0379 $0.1182
R;, 0.0048 0.0050 1.0378 $0.1641
R, 0.0042 0.0050 1.0372 $0.4040
R4 0.0032 0.0040 1.0373 $0.3991

Note: The certainty equivalent is derived using the customer’s
Engineering Domain-Specific Risk-Taking mean score.

To help make risk mitigation decisions, the customer, rep-
resented by a single person, was given the E-DOSPERT test.
The result, EDS ean = 3.17, was used with the monotonically
decreasing exponential risk utility function in Equation 8
where Vinex = $120M, Vipin = $0, Xy = 0, Xp = V(R),),
Occmax = 10, Occpyin = 0, Ocy = 0.1, and Rsp = 60. The con-
sequential cost was used as potential outcome values whereas
the occurrence values were used to determine probability of
occurrence. Table 5 shows the resulting probability, and util-
ity data. From this data, decision makers can see that risks R,
and R3, are the most preferred under a risk-tolerant decision
process and will cost less than $40M. A risk-neutral approach
would have chosen risks Ry and R,. The two most preferred
risks to mitigate also satisfy some of the questions surround-
ing mission success and science data return.

After a mission has been conceptually developed within
Team-X, it is often placed into competition with other com-
peting conceptual spacecraft mission designs for further
funding. In this case study, the SNAP mission was put into
competition against two other missions for funding after mit-
igating the risks identified above. Table 6 summarizes the rel-
evant SNAP risk data and risk data for the other competing
mission concepts. It is assumed that each mission has already
mitigated as many risks as was possible under the budget cap.

The decision maker who will choose which mission con-
cept is awarded funding to continue development has decided
to use a monotonically decreasing exponential risk utility
function as shown in Equation 8 where V.x = $60M, Vuin
= $0, XH = O, XL = V(Rn), OCCmaX = 10, OCCmin = O, OQf
10, and Rsg = 20. The decision maker’s E-DOSPERT
test result is EDS = 3.10, making her risk tolerant. Equation
10 is used to determine the CE of each design. Table 7 shows
the utility, probability, and certainty equivalent.

By using the risk appetite utility function method, the de-
cision makers see that the SNAP mission is the most preferred
design in the case of risk tolerance. Assuming all other mis-
sion selection criteria are equal, therefore, the SNAP mission
would be the preferred mission to receive continued funding.
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Table 6. Simplified study failure mode and effects analysis
for the SuperNova/Acceleration Probe mission and other
competing missions

Risk Function Sev. Occ. Det. RPN Cons. Cost
SNAP Mission

Rigoar Funct 1 3 4 4 112 $30M

Rignp Funct 4 2 5 4 80 $25M
Competing Mission A

Ry, Funct 1 4 5 3 84 $25M

Ry, Funct 2 3 2 8 48 $20M

R, Funct 3 5 3 4 60 $35M
Competing Mission B

R, Funct 1 6 1 4 72 $40M

Ry, Funct 2 8 3 5 120 $30M

Note: RPN, risk priority numbers; SNAP, SuperNova/Acceleration
Probe.

This selection would not have been made under a risk-neutral,
EV decision-making process; under that process, the decision
makers instead would have chosen Competing Mission A due
to the lower certainty equivalent. In the case of a neutral risk
appetite, CE(SNAP) = $0.1400, CE(MissionA) = $0.2700,
and CE(MissionB) = $0.1300. A similar process to this
would then be repeated at the next level of mission selection
after further mission concept development.

5. CONCLUSION AND FUTURE WORK

As seen in the case study, the risk appetite utility function
method allows engineering risk methods, which are in the

Table 7. Utility and probability data for design 1 and design 2

risks
Utility of System Certainty
Risk Risk Probability Utility Equivalent
SNAP Mission
ST 0.0018 0.0030 0.9988 0.1542
Rogne 0.0014 0.0020 0.0014 0.0780
Risk-adjusted value total: $0.2322M
Competing Mission A
Ry, 0.0035 0.0050 0.9985 0.1945
R, 0.0016 0.0020 0.9996 0.0568
Rs, 0.0015 0.0030 0.9985 0.1984
Risk-adjusted value total: $0.4497M
Competing Mission B
Ry, 0.0003 0.0001 0.9993 0.0837
R, 0.0018 0.0030 0.9988 0.1542

Risk-adjusted value total: $0.2379M

Note: SNAP, SuperNova/Acceleration Probe.

D. Van Bossuyt et al.

EV domain to be translated into an appropriate risk appetite
domain for a specific enterprise or decision maker. Viewing
the risk information through the lens of risk appetite provides
a decision maker with a new, numerically based approach to
select and justify selection of the most important risks to ad-
dress under constrained resources. Rather than using “gut
feeling” to try and explain risk decisions, this method gives
stakeholders a way to rationalize their risk-based decisions.

Several limitations are present in the method. This method
is only designed for individual stakeholders or enterprise-
level usage where one consistent risk appetite function can
be generated. Additional methods, such as the Accord deci-
sion support software package (Ullman, 2009), could be use-
ful in combining the inputs of multiple stakeholders into a
unified risk appetite utility function.

Further expansion of this methodology will examine the
benefit side of Equation 5, which can add an expected benefit
if the risk outcome is not realized. This area of research could
be especially fruitful for comparing multiple risks against one
another for risk-tolerant enterprises. Large risks can have as-
sociated large benefits. This method does not currently ac-
count for the potential large return for taking a large risk.

Adding a post risk-realization cost to return the system to a
nominal state is a promising area of future development for
this method. Seven potential options for returning the system
to a nominal state exist including repair, reconfiguration, re-
placement, redundancy, reconditioning, recovery, and reset-
ting. Depending upon which option is chosen to return a sys-
tem to its nominal state, the portion of Equation 5 that
represents the beneficial outcome could change. This re-
search only focuses upon the portion of Equation 5 that exam-
ines the costs of a risk. In addition, future risk realizations
could be limited from the initial risk event due to the option
chosen to return the system to a nominal state. The definition
of a nominal system state also could change to some form of a
reduced system capacity but a capacity that still provides
some value to the enterprise. This is exemplified with subsys-
tems failures on satellites such as the failure of the high gain
antenna and the tape recorder remote repair on the Galileo
spacecraft (Bindschadler, Theilig, Schimmels, & Vander-
mey, 2003).

Testing of this method should be conducted to determine
user satisfaction levels between utility risk functions gener-
ated with lottery methods and with E-DOSPERT test results.
For instance, surveys of user groups such as those conducted
in (Van Bossuyt & Tumer, 2010) could be conducted. Choice
determinations made with the help of risk functions gener-
ated from the E-DOSPERT test could be compared against
choices made by individual respondents on risk decisions where
a risk-averse person would decide differently than a risk-toler-
ant person. This would verify that risk appetite affects engi-
neering risk decisions. The same population of respondents
would also be provided data from the risk appetite utility
function method using risk functions generated with lotteries
to make risk decisions. In future work, this method will be
tested and verified at Boeing in the Commercial Airplane Di-
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vision with production-level design engineers who work in or
with a Team-X-like setting or equivalent under the auspices
of a National Science Foundation grant. This will include fur-
ther testing and exploration of the creation of the scaling fac-
tor, Rsg with the intent of developing rules of thumb specific
to the aerospace industry. Research is ongoing to investigate
“gaming” the E-DOSPERT test, which could adversely im-
pact the method presented in this article.

The risk appetite utility function method presented in this
article translates engineering risk data from the EV domain
into a risk appetite corrected domain using risk functions de-
rived from E-DOSPERT test results using a single-criterion
decision based design approach. The resulting utility func-
tions are aspirational in nature, which is a departure from
the predictive utility functions created using lottery methods.
The method presented in this article allows decisions to be
made under risk-tolerant or risk-averse decision-making con-
ditions rather than forcing decisions to be made using an EV
approach, as with engineering risk methods. Risk-averse in-
dustries (e.g., nuclear power and aerospace) will choose to
view risk data through a risk-averse lens, which emphasizes
risks that are more certain. Risk-tolerant enterprises could
have the appetite to accept riskier design choices that might
result in larger payoffs if the risks are not realized.

The method has been shown to change risk-based deci-
sions in certain situations where a risk-averse or risk-tolerant
decision maker would likely choose differently than the EV
approach suggests. As the E-DOSPERT test is further refined,
the risk appetite utility function method could be more useful.
Extensions of the method to examining the benefit side of the
risk utility equation will provide further benefit to the practi-
tioner. The risk appetite utility function method is a promis-
ing area of further research and practical application.

ACKNOWLEDGMENTS

This research was funded in part by the National Science Foundation
(CMMI 1030060). The opinions, findings, conclusions, and recom-
mendations expressed are those of the authors and do not necessarily
reflect the views of the sponsors. Special thanks go to Jacob Postman
and Zach Bailey for their MATLAB assistance.

REFERENCES

Arrow, K.J. (1950). A difficulty in the concept of social welfare. Journal of
Political Economy 58(4), 328-346.

Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk.
Econometrica 22(1), 23-36.

Bindschadler, D.L., Theilig, E.E., Schimmels, K.A., & Vandermey, N.
(2003). Project Galileo: Final Mission Status (Technical Report). Pasa-
dena, CA: Jet Propulsion Laboratory.

Cooper, A.C., Woo, C.Y., & Dunkelberg, W.C. (1988). Entrepreneurs’ per-
ceived chances for success. Journal of Business Venturing 3, 97-108.

Dong, H., & Wood, W. (2004). Integrating computational synthesis and de-
cision-based conceptual design. Proc. ASME 2004 Int. Design Engineer-
ing Technology Conf. Computers in Information & Engineering Conf.,
Paper No. IDETC/CIE2004, pp. 361-371. Salt Lake City, UT: ASME.

Du, X., & Chen, W. (2000). Towards a better understanding of modeling fea-
sibility robustness in engineering design. ASME Journal of Mechanical
Design 122(4), 385-394.

405

Dvir, R., & Pasher, E. (2004). Innovation engines for knowledge cities: an
innovation ecology perspective. Journal of Knowledge Management
8(5), 16-27.

Federal Aviation Administration. (2006). National airspace system system
engineering manual (3rd ed.). Washington, DC: Federal Aviation Ad-
ministration, ATO Operations Planning.

Gerber, A. (2002). Super Nova-Acc Probe (SNAP) (Technical report). Pasa-
dena, CA: National Aeronautics & Space Administration.

Grantham-Lough, K., Stone, R., & Tumer, 1.Y. (2007). The risk in early de-
sign method. Journal of Engineering Design 20, 155-173.

Hazelrigg, G.A. (1996). The implications of arrow’s impossibility theorem
on approaches to optimal engineering design. Journal of Mechanical De-
sign 118(2), 161-164.

Hazelrigg, G.A. (1998). A framework for decision-based engineering design.
Journal of Mechanical Design 120(4), 653—659.

Hillson, D., & Murray-Webster, R. (2007). Understanding and Managing
Risk Attitude. Aldershot: Gower.

Howard, R.A. (1988). Decision analysis: practice and promise. Management
Science 34, 679-695.

Hoyle, C., Tumer, I.Y., Mehr, A.F., & Chen, W. (2009). Health management
allocation for conceptual system design. Journal of Computing and Infor-
mation Sciences in Engineering 9(2).

Hubbard, D. (2007). How to Measure Anything: Finding the Value of Intan-
gibles in Business. Hoboken, NJ: Wiley.

IEEE. (1990). IEEE Standard Computer Dictionary: A Compilation of IEEE
Standard Computer Glossaries. New York: IEEE.

International Electrotechnical Commission. (1990). International Standard
IEC 61025 Fault Tree Analysis. Geneva: International Electrotechnical
Commission.

International Organization for Standardization. (1997). ISO 10628: Flow
Diagrams for Process Plants: General Rules. Geneva: International Or-
ganization for Standardization.

Ji, H., Yang, M.C., & Honda, T. (2007). A probabilistic approach for extract-
ing design preferences from design team discussion. ASME 2007 Int. De-
sign Engineering Technical Conf. Computers & Information in Engi-
neering Conf., Paper No. IDETC/CIE2007, pp. 297-306. Las Vegas,
NV: ASME.

Jones, J.A. (2005). An Introduction to Factor Analysis of Information Risk.
New York: Risk Management Insight.

Kahneman, D., & Tversky, A. (1979). Prospect theory: an analysis of deci-
sion under risk. Econometrica 47(2), 263-291.

Keeney, R.L., & Raiffa, H. (1993). Decisions With Multiple Objectives:
Preferences and Value Tradeoffs. Cambridge: Cambridge University
Press.

Kirkwood, C.W. (1997, January). Notes on Attitude Toward Risk Taking and
the Exponential Utility Function. Tempe, AZ: Arizona State University,
Department of Management.

Kurtoglu, T., & Tumer, I.Y. (2008). A graph-based fault identification and
propagation framework for functional design of complex systems. Jour-
nal of Mechanical Design 30(5).

Lewis, K., Chen, W., & Schmidt, E.L. (2006). Decision Making in Engineer-
ing Design. New York: ASME Press.

MacCrimmon, K., & Wehrung, D.A. (1990). Characteristics of risk taking
executives. Management Science 36, 422-435.

MacCrimmon, K.R., & Wehrung, D.A. (1986). Taking Risks: The Manage-
ment of Uncertainty. New York: Free Press.

Martin, J.D., & Simpson, T.W. (2006). A methodology to manage system-
level uncertainty during conceptual design. Journal of Mechanical De-
sign 128, 959-968.

McNamee, P., & Celona, J. (1990). Decision Analysis With Supertree (2nd
ed.). San Francisco, CA: Scientific Press.

Meshkat, L. (2007). A holistic approach for risk management during design.
Proc. Aerospace Conf., IEEE, 2007, pp. 1-5.

NASA. (1995). NASA Systems Engineering Handbook. Pasadena, CA:
NASA.

Oberto, R.E., Nilsen, E., Cohen, R., Wheeler, R., DeFlorio, P., & Borden, C.
(2005). The NASA exploration design team: blueprint for a new design
paradigm. Proc. 2005 Aerospace Conf., pp. 4398-4405.

Papalambros, P.Y., & Wilde, D.J. (2000). Principles of Optimal Design:
Modeling and Computation. New York: Cambridge University Press.

Pennings, J.M.E., & Smidts, A. (2000). Assessing the construct validity of
risk attitude. Management Science 46(10), 1337-1348.

Pratt, J.W. (1964). Risk aversion in the small and in the large. Econometrica
32, 122-136.



406

Ross, A.M., Hastings, D.E., Warmkessel, J.M., & Diller, N.P. (2004). Multi-
attribute tradespace exploration as front end for effective space system de-
sign. Journal of Spacecraft and Rockets 41(1), 20-29.

Russell, J.S., & Skibniewski, M.J. (1988). Decision criteria in contractor pre-
qualification. Journal of Management in Engineering 4(2), 148—164.
Schoemaker, P.J.H. (1990). Are risk-preferences related across payoff do-

mains and response modes? Management Science 36, 1451-1463.

Shah, J.J., & Wright, P.K. (2000). Developing theoretical foundations of
DFM. Proc. ASME 2000 Int. Design Engineering Technology Conf.
Computers in Information & Engineering Conf., Paper No. IDETC/
CIE2000. New York: ASME.

Slovic, P. (1964). Assessment of risk taking behavior. Psychological Bulletin
61, 330-333.

Stamanis, D.H. (2003). Failure Modes and Effects Analysis: FMEA From
Theory to Execution (2nd ed.). Milwaukee, WI: ASQ Quality Press.
Standards Australia New Zealand. (2009). AS/NZS ISO 31000:2009 Risk
management: Principles and Guidelines. Sydney: Standards Australia

New Zealand.

Stone, R.B., Tumer, I.Y., & Van Wie, M. (2005). The function—failure design
method. Journal of Mechanical Design 127(3), 397-407.

Stump, G.M., Lego, S., Yukish, M., Simpson, T.W., & Donndelinger, J.A.
(2009). Visual steering commands for trade space exploration: user-
guided sampling with example. Journal of Computing and Information
Science in Engineering 9(4), 1-10.

Ullman, D. (2009). Accord [Computer software]. Portland, OR: Robust
Decisions Inc.

US Department of Defense. (1980). Procedures for Performing Failure
Mode, Effects, and Criticality Analysis. Military Standard MIL-STD-
1629A. Washington, DC: US Department of Defense.

Van Bossuyt, D., Carvalho, L., Dong, A., & Tumer, LY. (2011). On measur-
ing engineering risk attitudes. ASME 2011 Int. Design Engineering Tech-
nical Conf. Computers & Information in Engineering Conf., Paper No.
IDETC/CIE2011, pp. 425-434. Washington, DC: ASME.

Van Bossuyt, D.L., & Tumer, LY. (2010). Toward understanding collabora-
tive design center trade study software upgrade and migration risks. Proc.
ASME 2010 Int. Mechanical Engineering Congr. Exposition, Paper No.
IMECE2010, pp. 315-328. Vancouver: ASME.

Van Bossuyt, D.L., Wall, S., & Tumer, I. (2010). Towards risk as a tradeable
parameters in complex systems design trades. Proc. ASME 2010 Int. Design
Engineering Technology Conf. Computers in Information & Engineering
Conf., Paper No. IDETC/CIE2010, pp. 1271-1286. Montreal: ASME.

Villemeur, A. (2000). Reliability, Availability, Maintainability, and Safety
Assessment. New York: Wiley.

von Winterfeldt, D., & Edwards, W. (1986). Decision Analysis and Behav-
ioral Research. Cambridge: Cambridge University Press.

Wassenaar, H.J., & Chen, W. (2003). An approach to decision-based design
with discrete choice analysis for demand modeling. Journal of Mechan-
ical Design 125(3), 490-497.

Weber, E.U., Blais, A.R., & Betz, N.E. (2002). A domain-specific risk-atti-
tude scale: measuring risk perceptions and risk behaviors. Journal of Be-
havioral Decision Making 15(4), 263-290.

Wertz, J.R., & Larson, W.J. (Eds.). (1999). Space Mission Analysis and De-
sign. London: Springer.

Douglas Van Bossuyt was a Researcher in the Complex En-
gineered System Design Laboratory at Oregon State Univer-
sity, where he completed his PhD in mechanical engineering.

D. Van Bossuyt et al.

His research focuses on addressing risk in the conceptual
phase of design of complex systems, understanding the risk
attitudes of engineering professionals, and developing formal
methodologies to make risk-informed decisions.

Irem Y. Tumer is an Associate Professor at Oregon State
University, where she leads the Complex Engineered System
Design Laboratory. She received her PhD in mechanical en-
gineering from the University of Texas at Austin in 1998.
Since moving to Oregon State University in 2006, her fund-
ing has largely been through the National Science Founda-
tion, Air Force Office of Scientific Research, Defense Ad-
vanced Research Projects Agency, and NASA. Prior to her
move to Oregon State University, Dr. Tumer led the Complex
Systems Design and Engineering group in the Intelligent Sys-
tems Division at NASA Ames Research Center, where she
worked from 1998 through 2006 as research scientist, group
lead, and program manager. Her research focuses on the over-
all problem of designing highly complex and integrated engi-
neering systems with reduced risk of failures and developing
formal methodologies and approaches for complex system
design and analysis.

Chris Hoyle received a PhD from Northwestern University in
mechanical engineering and an MS in mechanical engineer-
ing from Purdue University. He was previously a design en-
gineer and an engineering manager at Motorola, Inc. for 10
years before enrolling in the PhD program at Northwestern
University. His research interests are focused upon decision
making in engineering design, with emphasis on the early de-
sign phase when uncertainty is high and the potential design
space is large. His research contributions are to the field of
DBD, specifically in linking consumer preferences and enter-
prise-level objectives with the engineering design process.

Andy Dong is the Warren Centre Chair in Engineering Inno-
vation in the Faculty of Engineering and Information Technol-
ogies at the University of Sydney. His research is in design-led
innovation, where he has made significant methodological
contributions in explaining the dynamic formation of design
knowledge. He received the Design Studies Prize in 2005
for the most significant journal article in the field for his
work in the context of creative teams. He is currently an Aus-
tralian Research Council Future Fellow working on predictive
analytics to forecast rates of potential progress of engineered
products based on their underlying knowledge structure.


https://www.researchgate.net/publication/259426248

