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Abstract
Through the application of statistical models, the active mission success estimation (AMSE) introduced in this paper can 
be performed during a rapidly developing unanticipated failure scenario to support decision making. AMSE allows for 
system operators to make informed management and control decisions by performing analyses on a nested system of 
functional models that requires low time and computational cost. Existing methods for analyses of mission success such as 
probabilistic risk assessment or worst case analysis have been applied in the analysis and planning of space missions since 
the mid-twentieth century. While these methods are effective in analyzing anticipated failure scenarios, they are built on 
computational models, logical structures, and statistical models that often are difficult and time-intensive to modify, and are 
computationally inefficient leading to very long calculation times and making their ability to respond to unanticipated or 
rapidly developing scenarios limited. To demonstrate AMSE, we present a case study of a generalized crewed Martian surface 
station mission. A crew of four astronauts must perform activities to achieve scientific objectives while surviving for 1070 
Martian sols before returning to Earth. A second crew arrives at the same site to add to the settlement midway through the 
mission. AMSE uses functional models to represent all of the major environments, infrastructure, equipment, consumables, 
and critical systems of interest (astronauts in the case study presented) in a nested super system framework that is capable 
of providing rapidly reconfigurable and calculable analysis. This allows for AMSE to be used to make informed mission 
control decisions when facing rapidly developing or unanticipated scenarios. Additionally, AMSE provides a framework for 
the inclusion of humans into functional analysis through a systems approach. Application of AMSE is expected to produce 
informed decision making benefits in a variety of situations where humans and machines work together toward mission goals 
in uncertain and unpredictable conditions.

Keywords Risk · Functional modeling · Decision making · Mission success

Abbreviations
AI  Artificial intelligence
AMSE  Active mission success estimation
CDF  Cumulative distribution function
DRV  Daily recommended value

EMU  Extravehicular mobility units
EVA  Extravehicular activity
FBED  Functional basis for engineering design
FFD  Referred to as functional flow diagrams
FFIP  Failure flow identification and propagation
ISRU  In situ resource utilization
IVA  Intra-vehicular activities
PDM  Prognostic-enabled decision making
PHM  Prognostics and health management
PRA  Probabilistic risk assessment
SEV  Surface exploration vehicle
WCA   Worst case analysis

1 Introduction

The development of risk analysis has been deeply linked 
to space exploration, since the formalization of risk analy-
sis methods following the Second World War. Both the era 
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of space exploration and risk analysis of complex systems 
spawned from the technological progress of the Second 
World War and the advent of modern rocketry in the early 
twentieth century (Goddard 1920). The space race between 
the USA and the Soviet Union spurred the development of 
tools such as probabilistic risk assessment (PRA) (Kuma-
moto and Henley 1996) with the aim to closely examine 
complex system risk probabilistically and quantitatively. 
At the same time, prognostics and health management 
(PHM) began to emerge. As increasing complex systems 
were developed for space flight and exploration, it became 
imperative that engineers and operators have the ability to 
accurately and actively monitor system health and perfor-
mance. Sensors were developed that could monitor every 
aspect of system operation, including phenomena that would 
otherwise have been imperceptible. Taking data from these 
sensors, models of system operation and health could be 
constructed that utilize condition-based analysis, laying the 
groundwork for modern PHM. In recent years, there has 
been an increased interest in understanding risk and health 
of systems during the early phase of design of complex sys-
tems (Bossuyt Bossuyt and O’Halloran 2015; Van Bossuyt 
and Dong 2013; Van Bossuyt and Hoyle 2012; Van Bossuyt 
et al. 2013). However, a gap persists in the development 
of real-time risk-informed decision support tools for active 
and ongoing missions. Contemporary mission analysis and 
risk modeling methodologies require lengthy and extensive 
adjustment of system models and reanalysis when faced 
with unforeseen events. The subsequent delay of critical 
risk information necessary for decisions can lead to rapid 
development of complex and dangerous scenarios.

This paper presents the active mission success estimation 
(AMSE) method that provides timely risk information to 
inform mission decisions being made in crisis during rapidly 
evolving situations. Through adoption of a modular risk-
informed object-oriented approach to mission modeling, 
health monitoring, and analysis—and active recalculation 
of risk of mission failure as the mission progresses—a more 
accurate estimation of the probability of mission success can 
be developed and mission-critical decisions with many pos-
sible options can be analyzed to help inform mission control 
decision to increase the probability of total mission success.

The performance of AMSE necessitates that all mission-
critical components be modeled thoroughly using risk analy-
sis and prognostic techniques, and the models are devel-
oped for modularity to enable the rapid rearrangement of 
the model elements to evaluate available decision outcomes 
and estimate each outcome’s mission success probability. 
To effectively represent a mission framework, a functional 
modeling method is presented where environments of inter-
est and relevance can nest within each other and contain the 
systems of interest within a super system. This nested super 
systems approach to modeling is used to determine what 

environmental hazards are present and if these hazards can 
cause damage to the system of interest. Modeled mission 
tasks are analyzed including internal and external system 
risks, and hazard mitigating factors such as nested functional 
modeling environments representing protective barriers. The 
AMSE method presented in this paper is demonstrated on 
a case study of a crewed multiyear scientific mission on the 
surface of Mars for the establishment of a permanent scien-
tific base. In the case study, the eight astronauts constitute 
the systems of interest and their safety and survival are con-
sidered the metric for mission success.

1.1  Specific contributions

This paper presents the AMSE method for the real-time esti-
mation of risk during a space mission case study through the 
utilization of risk analysis techniques and functional mod-
eling. The AMSE method provides decision-makers with up-
to-date risk information at critical mission decision points. 
The AMSE method uses a form of nested functional models 
to analyze the influence of various layers of environmental 
protection such as space suits, vehicles, or structures. These 
protective layers can either provide protection to the systems 
of interest directly, protect mission-critical systems outside 
of the subject of interest, or protect each other through lay-
ering systems in a nested structure. The AMSE functional 
modeling technique takes a dynamic systems approach to 
provide a comprehensive picture of the interactions between 
various mission components. AMSE provides a rapid and 
active estimation of current mission success, as well as 
projections of probable total mission success based upon 
potential decisions. Through active analysis of the probabil-
ity of mission success at decision points, the probability of 
total mission success can be optimized allowing for greater 
mission safety and potentially greater scientific yield. Addi-
tionally, the object-oriented modular nature of the AMSE 
method enables fast adaption to unexpected mission sce-
narios. Though AMSE was developed for application in risk 
analysis of a space mission operations case study, AMSE 
can be easily adapted for use with any complex system and 
has potential applications for autonomous decision making.

1.2  Assumptions

AMSE depends on the validity of multiple, informed 
assumptions. The first assumption is that the functional 
model used is of an appropriate level of detail to be accu-
rate. To ensure this, we have used established functional 
modeling taxonomy and development standards.

Second, it is assumed that the failure distribution for a 
mission can be represented by an exponential distribution. 
The exponential distribution describes processes in which 
events occur continuously and independently at a constant 
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average rate (a Poisson process). However, under different 
missions that we did not consider, there may be a situation in 
which risk cannot be described as continuous or independent, 
and in those cases, an alternative distribution should be used.

The third assumption is that failure of individual sub-
systems can be considered independent. This should be the 
case if a system is properly decomposed into a functional 
model, in which all functions of a system are separated. At 
this level of decomposition, failures that may be correlated 
in the whole system are instead connected through flows and 
failure propagation.

2  Background

AMSE builds on the topics of decision theory, functional 
modeling, risk analysis, and PHM. Existing mission suc-
cess estimation methods rely on worst case analysis (WCA) 
(Ye 1997; Nassif et al. 1986) or Probabilistic Risk Assess-
ment (PRA) (Modarres et al. 2011; Mohaghegh et al. 2009). 
WCA, PRA, and other related methodologies are adept at 
analyzing potential foreseeable failure scenarios, but suffer 
in their ability to perform in situations where rapid recon-
figuration of the model is necessary. Such model reconfigu-
rations are needed during rapidly developing situations, such 
as those faced by in a space mission disaster.

2.1  Functional modeling

Functional modeling encompasses a variety of methods used 
to represent and model the functionality of a system. Func-
tional models include many sub-functions, representing work 
performed in the system as flows—the passage of materials, 
information, and energy—between functions and sub-func-
tions. In addition to flows internal to the system, export flows 
and import flows enter and exit the system boundary. A popu-
lar way to represent a functional model is through flow block 
diagrams, also often interchangeably referred to as functional 
flow diagrams (FFD) (Blanchard and Fabrycky 1990; Bohm 
et al. 2005). FFDs are useful for modeling systems with direct 
unidirectional flows passing between a variety of functions 
and clear system inputs and outputs can be defined. One issue 
with many existing methodologies for functional modeling is 
that they are difficult to apply to systems that are less linear, 
resulting in tangled networks of functions and flows that are 
difficult or impractical to analyze, or must be simplified to 
the point where they provide an inaccurate representation of 
the system and its associated dynamics.

The Functional Basis for Engineering Design (FBED) 
(Bryant et al. 2005; Hirtz et al. 2002; Kurtoglu et al. 2005; 
Stone and Wood 2000), provides concise definitions of func-
tions and flows that describe all possible engineered systems. 
Through the use of FBED, we can construct functional models 

of complex systems, using a common taxonomy of functions 
and flows. The process of developing an FBED model is:

1. Generate a Black Box model. This takes the highest-
level-possible view of the system and only considers 
flows into and out of the overarching system model.

2. Create function chains for each input flow and order 
them with respect to time. This step consists of follow-
ing a flow from its entrance into the system, through all 
sub-systems that interact with the flow, and finally exit-
ing the system. All systems that interact with the flow 
should then be placed into chronological order from the 
perspective of the flow.

3. Aggregate function chains into a functional model. In 
Step 3, the final step of FBED, the functional chains 
are combined to determine the underlying functional 
structure of the system. FBED is utilized in this paper 
due to the advanced development of failure analysis 
methods that are built upon FBED (Jensen et al. 2008; 
Kurtoglu et al. 2010; O’Halloran et al. 2015; Ramp and 
Van Bossuyt 2014; Stone et al. 2005).

2.2  Space mission risk assessment

Many risk assessment modeling techniques attempt to rep-
resent trends of physical failure through the application of 
various failure distributions. One common method is the use 
of a hazard rate λ, which describes the expected number of 
failures over a period of time. The hazard rate can be used 
in a failure distribution such as an exponential distribution 
(Eq. 1) to calculate the probability of survival of a system or 
sub-system at a given time (Wertz et al. 2011):

The expected survival rate can then be subtracted from 
1 (Eq. 2) to find the failure rate, or the probability that a 
system will have survived after time, t:

The failure rate (or related metrics) appears in a wide 
variety of risk assessment methods, but many additional and 
more complex techniques exist for evaluating the risk of fail-
ure of a system. One such method for evaluating the risk of 
failure is failure flow identification and propagation (FFIP) 
(Kurtoglu et al. 2010; Jensen et al. 2008). FFIP uses a func-
tional modeling approach based in a function block diagram 
structure (Stone and Wood 2000). FFIP can be enhanced to 
enable mission control, navigation, and autonomous deci-
sion making through the application of failure flow deci-
sion functions (FFDF) (Short et al. 2015, 2017). FFDF is 
a tool that determines an optimal decision when faced with 
problems of controlling or designing a system to maximize 
system survivability. Specific to the case study employed 

(1)S(t) = e−�t.

(2)F(t) = 1 − S(t) = 1 − e−�t.
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in this paper, space mission risk assessment can also be 
applied to control of autonomous systems to maximize mis-
sion success while minimizing human work hours (Short and 
Van Bossuyt 2015; Mimlitz et al. 2016; Short et al. 2016; 
Friedenthal et al. 2014; Mohaghegh et al. 2009; Kumamoto 
and Henley 1996).

While many of the existing methods are robust, they suf-
fer from lengthy setup and analysis processes. The heavy 
computational cost of these existing methodologies makes 
active mission assessment previously infeasible.

2.3  Prognostics and health management

Prognostics and health management (PHM) is a suite of ana-
lytical tools and methods used to predict and prevent fail-
ures in mechatronic systems (Sheppard et al. 2014). There 
are diverse approaches to PHM that are typically tuned to 
specific applications or industries (Hutcheson et al. 2006; 
Balaban et al. 2013). A common PHM case study for devel-
opment of models is battery health (Xing et al. 2011). Much 
research has been conducted on the important issues of bat-
tery capacity depletion (Saha and Goebel 2009), optimiza-
tion of battery life (Saha et al. 2012), generation of battery 
health data (Saha and Goebel 2007; Widodo et al. 2011), and 
application of battery PHM analysis (Saha et al. 2011). While 
battery health is a common case study, partially due to the 
large quantity of available data (Saha and Goebel 2007) and 
partially a result of general acceptance within the field, the 
methods and techniques are generalizable to a wide variety of 
systems and applications such as electrical actuators (Keller 
et al. 2006), transmissions and gearboxes (Zhang and Isom 
2011), and other components and systems (Pecht 2008).

PHM analysis can be used to inform a decision with the 
optimum level of risk through prognostic-enabled decision 
making (PDM) (Sweet et al. 2014; Herr et al. 2014; Nathalie 
et al. 2016). PDM is a valuable method in health manage-
ment of complex systems, because it allows a succinct mode-
ling of potential damage caused by the failure of a subsystem 
or individual part. Some PHM techniques model not only the 
mechatronic system itself, but also the physical interactions 
it encounters, such as mobility and environmental interface, 
control systems, structural actions, and hazards (Balaban 
et al. 2013; Frost et al. 2013). In this paper, we extend PHM 
methods to include the consideration of humans as addi-
tional sub-systems which to our knowledge has not been 
done before.

3  Methodology

The AMSE method presented here is based on a nested 
super system approach to space mission risk assessment that 
allows for the active estimation of mission success during an 

ongoing mission. Using techniques derived from functional 
modeling of systems, FFIP, and related methods in conjunc-
tion with concepts taken from decision theory, risk analysis, 
and PHM, AMSE is capable of providing useful insights 
when making mission control decisions by rapidly analyzing 
potential options when confronted with unanticipated and 
previously unanalyzed scenarios. In this section, we present 
the AMSE method using a case study of a Mars mission. 
First, two pre-steps are presented, then three primary phases 
(modeling, analysis, and interpretation) are shown.

3.1  Pre‑step 1: Mission success definition

To glean insight from AMSE, both a definition of mission 
success and a quantifiable method for evaluating success 
must first be established. In many cases, mission success can 
be defined as a primary system (or systems) of interest sur-
viving the length of the mission. One example of a system 
of interest surviving the length of a mission is a planetary 
exploration rover remaining functional for the entire dura-
tion of the planned mission. To determine the probability of 
survival of a primary system of interest and the related prob-
ability of mission success, a survival rate must be calculated. 
A survival rate, S(t) , tends to take the form of a cumulative 
distribution function (CDF) representing the probability 
that the system of interest will not have experienced a fail-
ure by time, t. One common form for a survival rate is the 
exponential survival rate which is found by subtracting the 
exponential failure rate, F(t) , from 1 as shown in Eq. 5. The 
exponential failure rate is found by taking the integral of the 
probability density function (PDF) form of the exponential 
failure rate, f (t) , which determines the probability that a fail-
ure will occur at the instant, � , given a hazard rate, � , which 
is the number of expected system failures over time. Equa-
tions (3), (4), and (5) define f (�) , F(t) , and S(t) , respectively 
(Pinto and Garvey 2012). These and other forms of failure 
distributions, such as system-specific PHM models, are an 
integral part of the AMSE methodology and necessary for 
the development of failure models:

3.2  Pre‑step 2: Functional model development

The AMSE method requires a series of functional models 
to represent every major system involved in the mission, 
as well as their individual behavioral and system health 

(3)f (�) = �e−�� ,

(4)F(t) = 1 − e−�t =

t

∫
0

�e−�� d�,

(5)S(t) = e−�t = 1 − (1 − e−�t).
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characteristics. We used the FBED method of functional 
modeling, because it clearly represents energy, material, 
and data flows. PHM information that can be collected from 
systems in real-time must be identified in this step built into 
the functional model where applicable. This information is 
encoded into the mathematical models developed below.

3.3  Phase 1: Modeling

In Phase 1 of the AMSE method, seven distinct steps are 
performed to develop the AMSE model. Figure 1 graphically 
shows the seven steps.

3.3.1  Step 1: Create a nested functional model 
of the mission

The first step consists of creating a metamodel of all major 
mission systems (previously modeled in the pre-steps above) 
within a nested super-system framework. This is performed 
by first modeling each individual system using traditional 
FBED methods (pre-step 2), before placing the individual 

systems into a nested super systems structure. An example 
functional model of a surface exploration vehicle (SEV) can 
be seen in Fig. 2. A graphical representation of the AMSE 
nested super systems structure for a Mars crewed surface 
exploration mission can be seen in Fig. 3. In Fig. 3, the 
outermost “system” is the space environment in the solar 
system that contains the Sun, Earth, Mars, and a commu-
nications satellite. Mission Control is defined as part of the 
Earth “system”. The SEV, the Martian Surface Habitat, and 
the EVA suit are located within the “Mars” system. Within 
the EVA suit, the astronaut is found. Thus, the astronaut (the 
system of interest in the case study presented in the next sec-
tion) is inside three larger systems. Under this method, flows 
can pass between systems, while crossing the boundaries of 
environmental or protective systems such as an SEV, space 
suit, or the Martian surface habitat module. This allows for 
the entire system to be modeled and to represent environ-
mental hazards and various levels of protection that prevent 
and mitigate system failure. Additionally, the effects of the 
current health of each layer of protection on the system of 
interest can be determined through application of PHM and 
risk analysis models and information (identified in pre-step 
2) for each individual system.

3.3.2  Step 2: Define critical system(s) of interest and critical 
flows

In the case of a functional model of a single system, critical 
functions and flows are defined as elements of the functional 
model that must be operational for the system to not be in a 
failure state (Lucero et al. 2014). In the context of super sys-
tems representing a mission framework, the idea of critical 
functions and flows is extended from the functional level to 
the system level, and a critical system of interest is defined. 
A critical system (or systems) of interest is a system that 
must be functioning in order for the mission to be considered 
not failed. For example, in the case of a rover mission, the 
critical system of interest is the rover, and for the case of a 
crewed space mission, each member of the crew is consid-
ered a critical system of interest. Step 2 concludes once the 
critical system(s) has been identified and defined.

3.3.3  Step 3: Develop mathematical models to represent 
graphical functional models, their health, failure 
distributions, and how failures relate to each other

The third step of the AMSE method consists of developing 
a mathematical model to represent the graphical functional 
model, and risk and PHM information developed in the sec-
ond Pre-Step. This mathematical model serves as the com-
putational basis of analysis of the system. Building on previ-
ous work on failure analysis and PHM in functional models, 

Create a nested func�onal model of the mission

Define the cri�cal sub-systems and flows

Develop mathema�c models to represent the 
func�onal model

Define a general Mission Plan

Create Task modules

Organize Tasks into Task Plan

Order Task Plans within Mission Plan

Start

Perform Analysis of the System

Fig. 1  Phase 1, modeling, process flow
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Fig. 2  Functional model of an 
SEV
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the logic by which failure propagates can be described and 
analyzed (Short et al. 2015, 2017).

In the AMSE method, it is important to assign failure 
distributions to systems and accurately represent how failure 
is passed between systems (Upadhyay 2010). These failure 
distributions will describe the instantaneous hazard rate of 
the system. PHM condition-based failure distributions must 
be selected that are dependent on the flows passed into and 
out of the system, and often are dependent on the time over 
which the system is utilized (though not exclusively, and 
could be dependent on resources such as the flow of cooling 
fluid at appropriate levels or available energy). Additionally, 
for systems for which PHM models have not been developed, 
several common forms of failure distributions can be used, 
such as the Weibull distribution, normal distribution, and 
the exponential distribution (Upadhyay 2010). However, for 
many systems, more complex prognostic health models have 
been developed and can be integrated into the math of the 
system models (Goebel et al. 2008; Saha et al. 2009; Gao 
et al. 2002; Daigle et al. 2011).

Once the individual systems have been analyzed to deter-
mine how failure will propagate (Jensen et al. 2009; Kur-
toglu and Tumer 2007; Short et al. 2017), the entire nested 
super system assembled in Step 1 can be modeled. The super 
system model is constructed in the same manner as a sin-
gle functional model, but with systems in the place of sub-
systems. The end product is a mathematic representation of 
a risk-informed functional model that can track the passage 
of flows between all mission systems and actively reported 
an estimated system health.

3.3.4  Step 4: Define a mission plan

A mission plan is used in AMSE to develop future scenarios 
for automatic mission success probability calculation. The 
mission plan includes the planned operations and objectives 
to be completed over the course of a mission. We suggest 
that the mission plan start loosely with only primary mis-
sion objectives and milestones defined at first, and then the 
secondary objectives and operations that must be completed 
to facilitate the performance of objectives can be developed. 
For use with AMSE, the mission plan is then broken down 
further into actionable items that can be completed by sys-
tems in the mission. These actionable items are referred to 
as “tasks” for the rest of this paper. Examples of tasks for a 
rover include driving a specific distance, performing a sci-
entific operation, or performing communication with Earth. 
For the case of a crewed space mission, tasks may include 
EVAs, the performance of experiments, or health-related 
tasks such as eating and sleeping.

3.3.5  Step 5: Develop task modules

Task modules are important to develop for the AMSE 
method, because AMSE uses tasks to automatically plan 
how mission objectives can be completed when analyzing 
potential decision choices. Tasks modules include the dura-
tion that a task is to be performed, all systems and resources 
used during the task, and any fatiguing or consumption 
of systems affecting the health of systems that may occur 
during completion of the task. This information will be 
necessary for analyzing the mission in Phase 2 of AMSE. 
“Appendix 1” lists several typical mission tasks, and associ-
ated resource and system health cost parameters.

3.3.6  Step 6: Organize tasks into a task plan

Using the task modules generated in Step 5, the next step 
is to organize the task modules into a task plan that defines 
typical operations or schedules that are to be followed within 
the mission plan. For example, a task plan can represent all 
of the tasks to be completed on a particular type of day, such 
as a day that an EVA is to be performed by a crew member. 
Additionally, a typical week can be assembled from task 
plans for days and made into a larger meta-task plan. The 
bundling of task modules into task plans allows for more 
rapid reconfiguration of the system model for analysis by 
AMSE by allowing the mission controller or astronaut per-
forming the analysis to quickly assemble a typical period of 
time to include into the analysis.

3.3.7  Step 7: Arrange task plans to align with the mission 
plan

The general mission plan defined in Step 4 is now filled 
in with task plans developed in Step 6. This enables the 
analysis of the mission using AMSE by providing a time-
discretized list of all of the actions and systems that are to 
be used for completion of the mission as a whole. Figure 4 
shows how task modules are assembled into task plans and 
then arranged to align with the mission plan.

While each of the seven steps of Phase 1 must be com-
pleted prior to using AMSE, and the initial modeling can 
involve a large time investment, though once many of these 
steps have been performed, they do not have to be performed 
again. If the model needs to be reconfigured to account for 
an unforeseen circumstance or to iterate on the mission 
design (in the case of using AMSE for mission design rather 
than mission operations), adjustment of the models devel-
oped in Step 3 or reconfiguration of the Task Plans in Step 
6 can account for the majority of changes that may need to 
occur to the mission plan and its constituent parts. Due to the 
ease of configurability enabled by initial up-front investment 
of time and resources in model building, AMSE models are 
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able to be reconfigured rapidly to adjust to unforeseen cir-
cumstance or examine a variety of options to inform a mis-
sion control decision.

3.4  Phase 2: AMSE analysis

As with Phase 1 of AMSE, the second phase, analysis, 
requires the investment of time and resources to generate the 
mission models for analysis. Unlike Phase 1, Phase 2 only 
must only be setup once and will be run whenever the evalu-
ation of a new mission model is desired. The majority of the 
math necessary for Phase 2 was already developed from Step 
3 of Phase 1 where the mathematical representation of the 
mission was developed. The performance of Phase 2 takes 
the form of execution of an algorithm consisting of eight 
individual steps. The eight steps that comprise the Phase 2 
algorithm are detailed below. A flowchart of Phase 2 algo-
rithm can be seen in Fig. 5.

3.4.1  Step 1: Step through mission plan

Starting with the earliest task that has not yet been analyzed, 
select each task and then perform Steps 2 through 5 on them. 
This is necessary to analyze how the success rate of the mis-
sion develops over time.

3.4.2  Step 2: Calculate resource cost of task and PHM 
effects

Any resources consumed or systems fatigued by the comple-
tion of the task must be accounted for. One implementation 

Fig. 4  Organization structure of tasks

Fig. 5  Phase 2, analysis, process flow
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of this is a resource matrix that contains how much of 
each resource is available, and subtract from the matrix as 
resources are consumed. A similar approach can be utilized 
for the tracking of system health from mechanical wear, 
environmental conditions, or energy usage.

As an example of Step 2 of the algorithm, the model for 
kilocalories used by an astronaut during the performance of 
a task is displayed in Eq. (6), where k represents kilocalories 
used, p represents physical exertion required to perform a 
task on a scale of 0 to 10, where sleep is a 0.5 and vigorous 
exercise is a 9.5, d represents the duration of the task in 
hours, and w represents the astronauts current weight in kilo-
grams (Appendix 2. Estimated Calorie Needs per Day, by 
Age, Sex, and Physical Activity Level-2015–2020 Dietary 
Guidelines-Health.Gov 2016).

3.4.3  Step 3: Calculate hazard rates presented to critical 
system of interest

Utilizing the mathematical system model with health infor-
mation developed in Phase 1, calculate what the risk of sys-
tem failure is for completion of the task. We recommend cal-
culating the risk in the form of an instantaneous hazard rate, 
�(�) , representing the number of system failures expected at 
the instant �.

3.4.4  Step 4: Record hazard rates

A matrix containing hazard rates for the systems of interest 
and the time at which the hazard rate was reached should 
be generated. This will be necessary for the calculation of 
a total mission failure and success rate in later steps. The 
matrix values for the first three sols spent on Mars for one 
of the astronauts in the case study presented in this paper is 
reported in “Appendix 2”.

3.4.5  Step 5: Repeat until complete

If tasks still exist in the mission plan that have not yet been 
analyzed, return to Step 1 of Phase 2. If all tasks in the mis-
sion plan have been completed, then continue on to Step 6 
of Phase 2.

3.4.6  Step 6: Calculate total mission hazard rate

The mission hazard, Λa(t) , rate defines how often failure is 
to be expected while executing a mission. For the case study 
presented, failure is defined as the loss of human life during 
a space mission. However, for a manufacturing process, it 
could be shutting down the production line or the generation 
of product that does not meet quality standards.

(6)k = (p ⋅ 0.8556 + 0.5622) ⋅ w ⋅ d.

Taking the instantaneous hazard rates generated from the 
functional models and real-time PHM information devel-
oped in Steps 2 and 3, calculate the total hazard rate for the 
remainder of the mission time as a function of time over the 
entire length of the mission. Like the instantaneous rate, 
�a(�) , the total mission hazard rate, Λa(t) , describes the 
number of expected system failures per unit of time. While 
this can be found using integration of continuous data, for 
the purpose of discretized data generated in completing the 
AMSE method, a weighted average can find the total mis-
sion hazard rate. This is found by summing the product of 
the instantaneous hazard rate for a task and the duration of 
a task, Δ� , and then dividing by the total mission length, T, 
minus the current time of the mission (Eq. 9).

3.4.6.1 Formulation 1: Λ
a
(t) , formulation of  hazard 

rate Here we provide the mathematical formulation for 
Λa(t) , the hazard total rate presented to a critical system of 
interest from an environmental or internal hazard over the 
remaining course of the mission 

[

Losses of System

mission

]

.

3.4.6.2 Formulation 1.1: Sets � ∈ E : set of all Tasks in a 
Task Plan.

� ∈ Et : set of all uncompleted tasks in the task plan after 
time, t.

h ∈ H : set of all hazards faced by the system of interest.
h ∈ H

�
 : set of all hazards presented to a critical system of 

interest, s , in the completion of task, �.
a ∈ A : set of all critical systems of interest in a system.
pah ∈ P : set of all parameters used to calculate hazard 

rates in PHM-based failure distribution, R , for system, a 
[various units].

3.4.6.3 Formulation 1.2: Parameters T = Total planned 
mission length (h).

Δ�
�
= Time elapsed during the completion of a task, � 

(h).

3.4.6.4 Formulation 1.3: Variables � = Instantaneous time 
in the mission (h).

t = Time elapsed since mission start (h).

3.4.6.5 Formulation 1.4: Calculation The hazard rate for an 
individual hazard, h , is found by inputting the appropriate 
parameters into the PHM-based failure distribution, R.

The total hazard rate presented to a critical system of 
interest, s , during a task, � , is:

(7)�ah = R(ph(i))

[

Losses of System

hour exposed to hazard

]

.
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The combined hazard rate presented to all critical systems 
of interest, s , for the remainder of the mission, is given by:

3.4.7  Step 7: Calculate probability of mission survival 
over time

In this step, calculate the probability of mission survival 
over time, Sa(t) , for a critical system of interest, a , using the 
total mission hazard rate as shown in Eq. (10). In the case 
of a single critical system of interest, Sa(t) , is equivalent to 
the total mission probability of success, Psuccess . However, 
in the case of multiple critical systems of interest, Psuccess is 
equivalent to the intersection of the probability of mission 
survival, Sa(t) , for all systems as shown in Eq. (11) Formula-
tion 2 below.

3.4.7.1 Formulation 2: (Psuccess) formulation of  probability 
of mission success Here we provide the mathematical for-
mulation for (Psuccess), the probability of total mission suc-
cess 

[

Successful Missions per Attempt
]

.

3.4.7.2 Formulation 2.1: Sets a ∈ A : Set of all critical sys-
tems of interest in a system.

3.4.7.3 Formulation 2.2: Parameters T = Total planned 
mission length (h).

3.4.7.4 Formulation 2.3: Variables t = Time elapsed in the 
mission so far (h).

3.4.7.5 Formulation 2.4: Calculation The probability of 
survival for a single critical of interest, s , is calculated for 
planned mission time remaining, T − t

The probability of total mission success is calculated for 
mission time, t

(8)�a(�) =
∑

h∈H
�

�ah

[

Losses of System

hour

]

.

(9)Λa(t) =

∑

�∈Et �a(�) ⋅ Δ��

T − t

�

Losses of System

Mission

�

.

(10)Sa(t) = e−Λa(t)⋅(T−t)

[

Systems Survive Mission

Attempt

]

.

(11)Psuccess(t) =
⋂

a∈A

Sa(t)

[

Successful Missions

Attempt

]

.

3.4.8  Step 8: Display results

Finally, results of the AMSE analysis are presented in a 
human readable form to support decision making. To make 
the results of the AMSE analysis human readable, the instan-
taneous hazard rate and survival rate for an individual criti-
cal system of interest should be plotted, as well as the prob-
ability of total mission success over time. This provides a 
quick visual check of how the probability of mission success 
develops over time, as well as providing insight on any task 
or period of time that may be adversely affecting the prob-
ability of mission success. Additionally, it may be helpful to 
plot system- and hazard-specific values to determine what 
degraded system health states may be leading to less-than-
desired mission success probability that need to be directly 
addressed. Viewing the results of the analysis in this way 
allows for easier interpretation of the results, troubleshooting 
of low-success-probability mission plans, and allows prog-
nostics-enabled decisions to be made by human operators 
that better consider how system health develops over time.

Similar to Phase 1, the initial setup of Phase 2 can be 
time-intensive, but after it is set up the first time, it is 
unlikely to require any additional work be performed and 
it should be applicable to any model generated in Phase 1.

3.5  Phase 3: Interpretation of results

Phase 3 of the AMSE method consists of interpreting the 
results of the analysis from Phase 2. This phase is difficult to 
break into concise steps as it is less procedural, and instead 
aims to generate mission decision or design insight that is 
informed by analysis and is model- and mission-specific. 
However, there are some general guidelines that can be 
applied to most cases that a practitioner might encounter.

One important metric to observe is the probability of mis-
sion success at the beginning of the mission, Psuccess(0) , or 
the probability of total mission success over the entire span 
of the mission from beginning to end. This metric is impor-
tant, because it describes the total probability that a mission 
will be successful including all tasks, systems, expected 
environmental conditions, and other health-affecting factors 
over the entire mission plan. Additionally, it should be noted 
that Psuccess(t) at time t = 0 is the lowest that it will ever be 
during a nominal mission, because it includes all of the risk 
from all of the tasks that are to be completed.

One way to conceptualize Psuccess(0) is as the probability 
that a speeding driver will be pulled over by the police dur-
ing a long trip. At the beginning of the drive, there exist the 
most opportunities for the driver to be pulled over. However, 
over the course of the trip, the number of remaining chances 
to be pulled over decreases, because there is less of a dis-
tance left to traverse, and therefore, less of a chance that the 
speeding driver will be caught.
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Additionally, it should be noted that Psuccess(t) approaches 
1 as time remaining in the mission approaches 0. It is impor-
tant to keep this in mind, especially in high-risk missions 
that appear to become more successful near the end of the 
mission. This line of thought constitutes a fallacy in the way 
the model is viewed as the higher probability of survival 
near the end can only be achieved, if a low probability of 
survival is completed near the beginning. Additionally, it is 
important to understand how a single high-risk mission task 
could drastically lower all of the mission success estimation 
before the task is completed. For example, if a mission is 
conducted where all mission tasks have a 100% probability 
of success, except for one task that has a 10% chance of 
success but presents no long-term system health effects, the 
probability of mission success will be only 10% until after 
the task is completed.

An important consideration when working with AMSE 
is properly defining expected and acceptable levels of risk 
early in the process and realistically considering the conse-
quences of possible outcomes. If a manufacturing process 
has a 70% chance that each product will pass quality checks, 
then that may be acceptable in some cases. However, a 70% 
chance of loss of life is generally unacceptable. Digging into 
the model and seeing how it responds to a wide variety of 
foreseeable issues before they come up is advisable, because 
this will help to inform the decision maker’s general attitude 
and will allow operators to address problems before they 
arise.

Finally, if uncertain parameters are used in the creation 
of the model, sensitivity analysis should be performed. This 
will inform the operator of potential biases and shortcom-
ings their model could have based on assumptions about the 
performance of individual sub-systems.

4  Case study

A case study is presented in this section of a hypothetical 
space mission to establish a permanent research settlement 
on the Martian surface using simple and widely available 
models. This approach allows for the more direct evaluation 
of the AMSE methodology as a decision support tool, while 
using the case study as a framework for the evaluation of 
AMSE’s effectiveness and responsiveness.

The planned mission consists of two crews consisting 
of four female astronauts each arriving at the same site 26 
months apart. The time horizon of the mission begins with 
the arrival of the first crew, Crew Alpha, and continues up 
to their departure after 1070 Martian sols. This time hori-
zon was selected, so that the comparatively high-risk activi-
ties of accent and descent from orbit would not affect the 

analysis, and the focus can remain on surface operations and 
the demonstration of AMSE. The second crew, Crew Beta, 
is also analyzed with AMSE, but the primary focus of the 
case study is on Crew Alpha.

4.1  Crew composition

Each crew consists of four female astronauts who are all 
approximately 170 cm tall and range from 60 to 65 kg. The 
reason behind sending an all-female crew is that it cuts down 
on the quantity of food necessary to sustain their health and 
allows for more shared resources such as commonly sized 
space suits or extravehicular mobility units (EMUs). This 
idea has been proposed in the past by a variety of individuals 
including participants in the NASA Hawaii Space Explora-
tion Analog and Simulation (HI-SEAS) test (HI-SEAS Mis-
sion 3|Solar System Exploration Research Virtual Institute 
2016; Greene and Oremus 2014).

To model human crew survival from a functional perspec-
tive, models of the Martian environment and the necessary 
conditions for human life are developed. Critical informa-
tion used in the development of the model is presented in 
Sect. 4.2 through 4.5.

4.2  Human requirements to live in space

Humans operating in space environments requires external 
life support systems to continue living and to be able to 
perform work tasks. The major requirements for sustained 
human survival in space include: temperatures between 4 
and 35 °C, 0–0.5% atmospheric carbon dioxide by volume, 
35–350 kPa ambient pressure, radiation dose below 15 
roentgens per year (Environment of Manned Systems 2016), 
2 liters of water per day (Gleick 1996), access to 34 essential 
nutrients (Nutrition 2016), and a minimum of approximately 
1300 kcal per day (Appendix 2 Estimated Calorie Needs per 
Day, by Age, Sex, and Physical Activity Level-2015–2020 
Dietary Guidelines-Health.Gov” 2016).

On Mars, threats to maintaining human life include: 
exposure to radiation, surface storms, and exposure to the 
very low atmospheric pressures and temperatures. On the 
Martian surface, ambient pressures averages 0.6% of Earth 
sea-level pressure, atmospheric composition consists of over 
96% carbon dioxide (Mars Fact Sheet 2016), mean surface 
temperatures are approximately − 63 °C, and raw surface 
radiation exposure is upwards of 1000 times greater on the 
surface of Mars than Earth (Plante and Lee 2005).

4.3  Human exploration of Mars and site selection

Current NASA deep space mission planning methodol-
ogy is heavily reliant on materials acquired at the site 

Author's personal copy



 Research in Engineering Design

1 3

through the process of in situ resource utilization (ISRU) 
(NASA::S&MS::In Situ Resource Utilization (ISRU) Ele-
ment 2016). For this reason, NASA has compiled a series 
of parameters that are ideal for a Mars base site. A decision 
matrix, compiled by the First Landing Site/Exploration Zone 
Workshop for Human Missions to the Surface of Mars, lists 
two primary criteria categories: (1) Scientific Merit and (2) 
ISRU/Engineering criteria. The engineering criteria consider 
foundational factors such as water supply and the presence 
of plant micronutrient minerals that are foundational to a 
long-term human presence. The optimal ISRU/Engineering 
selection criteria were used as the primary criteria for site 
selection.

The principal location risk was deemed to be dust storms. 
These have typically originated in the southern hemisphere 
during or around perihelion, and Martian summer (Barnes 
1999). Dust storms can reduce visibility over the entire 
planet, making navigation difficult for astronauts during an 
extravehicular activity (EVA). Additionally, dust can also 
compromise solar power generation. Evidence for surface 
lightning has also been observed, which could affect power 
systems (Ruf et al. 2009). Dust storms occur at an average 
rate of 7.1 storms per Martian year (Beish and Recorder 
2016), and are generally more intense in the southern hemi-
sphere (Cantor et al. 2002). Thus, the northern hemisphere 
is preferable for colonization.

The planned Mars mission utilizes solar power (Do et al. 
2016). While average insolation is greater at the poles, it is 
more consistent at the Martian equator. An average inso-
lation of 200 W/m2 occurs around the Martian equator. A 
peri-equatorial site would, therefore, be best for power and 
agricultural performance.

Within these criteria, NASA has listed a few potential 
landing sites for un-manned missions that exhibit fluvial fea-
tures and possible hydraulic soil infiltrates for ISRU water 
reclamation. The list includes the Mawrth Vallis and Nili 
Fossae sites. Martian surface spectroscopy data suggests that 
the essential micronutrients and minerals vital to the growth 
of most plants can be found in Martian soil. For this simula-
tion, it is assumed that all inorganic plant micronutrients are 
present at the chosen Martian Sites.

4.4  Nutrition requirements

The most important long-term life support risk to humans 
on any deep space mission is nutrition, because food is the 
greatest one-time consumable by mass after fuel. Lifting 
mass out of orbit is extremely costly, thus the total supply 
of food that can be taken into space is limited. Additionally, 
the biosphere in which most food is grown is arguably one 
of the most complicated systems yet documented; artificial 
replication is very prone to catastrophic cascading failure 
(MacCallum et al. 2004). Therefore, a high risk of starvation 

exists due to food production being prone to failure, and food 
carrying capacity at launch being extremely limited.

The US Food and Drug Administration defines 34 key 
macro and micronutrients essential to human survival (Food, 
Administration, and others 2014). In addition to the daily 
recommended value (DRV), each macro and micronutrient 
has an approximate biological half-life. To consolidate this 
information into a more concise metric, an index of critical-
ity was developed as shown in Eq. (12).

This ratio inflates for both high-intake requirements and 
quick biological half-lives, yielding a metric whereby the 
largest numbers represent the most critical nutrients. Con-
veniently, this criticality index also indicates which micro-
nutrients are practical to bring from Earth as supplements. 
This index was used to categorize the nutrients that would be 
more efficient to produce in situ on Mars. Again, high-mass 
requirements for some consumables, such as carbohydrates, 
protein, fat, and other macronutrients, restrict the efficiency 
of supplying such materials from Earth. All macronutrients, 
namely carbohydrates, fat, protein, and dietary fiber can only 
be efficiently produced on site (Do et al. 2016). It was found 
that the most critical nutrients are carbohydrates, protein, 
dietary fiber, and fat.

Crops were selected using two criteria: the aforemen-
tioned nutrient criticality index, and growing time. Ulti-
mately, potatoes, soybeans, sweet potatoes, wheat, and 
peanuts were chosen as the primary crops. Various other 
crops were considered as well for their rich micronutrient 
production including: cabbage, tomato, bell pepper, spinach, 
cucumber, kale, garlic, onion, and broccoli. Additionally, it 
should be noted that several vitamins and minerals are prin-
cipally animal products and will be assumed to be brought 
along from launch as dietary supplements. These include 
cholesterol, vitamin D, vitamin B12, vitamin H (biotin), and 
iodine.

4.5  Included model systems and resources

In addition to the models of the astronauts, two Martian 
surface habitat modules, two SEVs, and twelve total space 
suits are included (6 space suits brought by Alpha Crew and 
6 space suits by Beta Crew). The modeled systems are bro-
ken down further into sub-systems such as those for power 
generation, life support, in situ resource utilization, or waste 
management in the case of the habitats. For instance, the 
model for the habitat examines PHM relevant data such as 
the quantity and intensity of physical work performed, power 
consumption, load on the life support systems, time of expo-
sure to the Martian environment, and accumulated fatigue 

(12)Criticality Index = Ci =
DRV

Bio-Halflife

[g

h

]

.
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from the use of the habitat airlock. Another system for which 
a model was developed is the SEV, which models the hazard 
rates of wheel failure, battery loss, mechanical fatigue, and 
general health effects from exposure to the Martian environ-
ment. Equations (13) through (16) show the distributions 
used for the hazard rates for tires, power, mechanical fatigue, 
and environmental damage. Equation (17) shows how the 
combined SEV failure hazard rate is found.

The SEV allows for greater mission scientific yield 
through expanding the range of EVAs, but is not neces-
sary for preserving health, so Weibull distributions are fit 
to desired failure rate characteristics. These distributions 
can be replaced with more system-specific PHM models to 
increase model accuracy in exchange for minimal compu-
tational cost. However, for the purposes of the case study—
namely to demonstrate AMSE—the models presented above 
are sufficient. The hazard rate for the SEV’s wheels, �wheel , 
is dependent on the time that the SEV is driven on the Mar-
tian surface, tdriven , and models six wheels designed to last 
two whole mission lengths before replacement. The SEV’s 
battery health, �power , is dependent on the number of battery 

(13)

�wheel = 6 ⋅ �wheel =
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charge cycles, Qcycle , with the equivalent cycles of five mis-
sions before failure. A larger number of missions before 
expected failure were used, because replacement of the SEV 
battery would be more time- and resource-intensive than the 
replacement of the wheels. The SEV’s general mechanical 
failure rate, �mech , is dependent on the intensity at which the 
SEV is driven, I , and the time driven at intensity, tI , with 
two mission cycles at expected intensity before failure. The 
SEV’s failure from exposure to the Martian environment, 
�expo , is dependent on the time that has elapsed since the 
last general maintenance operation, tmission − tmaint , with the 
equivalent time between maintenance of 350 Martian sols.

Additionally, a variety of consumable resources are 
brought, such as food and the supplies necessary to start a 
farm to generate food and become Earth independent. The 
crops brought along include soybeans, potatoes, peanuts, 
wheat, and sweet potatoes. The selection of these crops is 
informed by previous studies, but new calculations are per-
formed to estimate the volume of each crop to grow includ-
ing updated nutritional information for crops and metabolic 
model for caloric intake (Do et al. 2016; Jones 2000). These 
crops are chosen for their ability to meet DRV for necessary 
macronutrients and provide a variety in the diet. The crops 
are grown in a vertical farming unit attached to the Martian 
habitats. It is assumed that the Martian habitats are deployed 
before the arrival of the crews and only final verification 
operations must be performed upon arrival.

4.6  Mission plan

The plan consists of eight stages. The stages are defined 
as: (1) Alpha arrival and setup, (2) Starting Farm Alpha, 
(3) Alpha primary exploration window, (4) Preparation for 
arrival of Beta, (5) Start Farm Beta, (6) Crew Beta arrival 
and setup, (7) Cooperative scientific window between Alpha 
and Beta, and (8) Preparations for departure of crew Alpha. 
On a typical day, crew members will get 8.6 h allocated for 
sleep/hygienic activities, 2 h for food preparation and eating, 
2 h for exercise, 1 h for farming, and then the remaining time 
split between intra-vehicular activities (IVA) and extravehic-
ular activities. IVAs refer to any scientific, maintenance, or 
other task that is performed within the Martian surface habi-
tat module that is not described by another category. EVAs 

Table 1  Crew EVA schedule 
over a nine-Sol period

Crew 
member

Sol 1 Sol 2 Sol 3 Sol 4 Sol 5 Sol 6 Sol 7 Sol 8 Sol 9

A EVA EVA EVA
B EVA EVA EVA
C EVA EVA EVA
D EVA EVA EVA
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refer to any activities performed in an outside of the habitat 
while wearing an EMU. This includes tasks that involve the 
use of the SEVs. EVAs are performed on a rotating nine-sol 
schedule which can be seen in Table 1. On days where an 
EVA is performed, it is typically an 8-h EVA. The remaining 
time of the day is dedicated to IVA.

A segment of the mission plan can be found in Fig. 6; the 
complete mission plan can be seen in “Appendix 3”.

4.7  AMSE cases

To evaluate AMSE’s ability to inform mission design and 
decision making through functional modeling, several exam-
ples of mission crises that may occur were considered and 
modeled in AMSE. For the purpose of this demonstration of 
AMSE, it is assumed that these crises were not previously 
predicted and analyzed. The primary systems of interest for 
all crises considered are the astronauts and their survival 
is considered the metric for mission success. Additionally, 
loss of crew members has the potential to lead to loss of 
mechanical systems, as it reduces the crew capability to 
maintain and repair systems, potentially leading to cascad-
ing failure. Due to its high speed, AMSE is primarily useful 
in supporting decision making in real-time for scenarios that 
were previously unpredicted or un-modeled.

4.7.1  Inaccurate mission calculations

The first crisis to be considered in the case study is the 
response to a faulty assumption or calculation performed 
in the mission planning stage. Previous robotic missions to 
Mars have been lost due to incorrect calculations (Board 
1999). The example considered is that the estimations for 
time spent performing tasks are inaccurate and as a result, 
the expected caloric intake necessary is much lower than the 
real needs of the astronauts.

In this case, the initial estimate for the area to allocate 
to crops is 35, 40, 85, 65, and 4 m2 for soybeans, potatoes, 
peanuts, wheat, and sweet potatoes respectively, to serve a 
caloric demand of 2565 kcal per person per day. However, 
in reality, each astronaut burns 3025 kcal per day in the case 
study. Crises related to food production and nutrition are of 
particular interest due to the high impact on mission success 
and the potentially limited ability to respond due to inability 
to easily send more food if needed. Additionally, nutrition-
based crises provided a good test case for AMSE’s ability to 
model human survival as part of a PHM problem.

Using only the resources available to them on Mars, Crew 
Alpha must determine a way to compensate for the discrep-
ancy between their available caloric sources and their actual 
caloric requirements.

4.7.2  Inability to farm

Due to the criticality of food to the mission success (Weir 
2011), a second food inspired case is also considered. In this 
case, a correct 3025 kcal per day assumption is made dur-
ing mission planning and enough emergency backup food 
is planned for triple the time estimated to start the farm and 
become food self-sufficient (405 sols). However, due to 
unknown reasons, none of the crops grow and Crew Alpha 
must wait for Crew Beta to arrive with more food on sol 770. 
With no ability to generate more food, Crew Alpha must 
explore options to improve their probability of survival using 
AMSE to inform their decisions.

4.7.3  Broken arm

The mission plan contains many tasks that must be com-
pleted and these tasks are initially distributed to maximize 
the probability of mission success. However, there are a wide 
variety of situations that may necessitate a reallocation of 
tasks, such as the performance of EVAs, to other crew mem-
bers. This can have potentially dire consequences, because it 
increases the average caloric load on other astronauts which 
can lead to nutritional issues as well as increasing the poten-
tial exposure to harm, increased wear on assigned EMUs, 
and increased radiation exposure.

Sol 0 

Crew Alpha Arrives on the Surface  

Perform EVAs and IVAs to verify critical Martian 

Surface Habitat functionality  

Unpack transit vehicle  

Set up habitat module  

Sol 1-5 

Perform EVAs to validate external less critical functions 

Begin Setup for experimentation and  

Start farm  

Sol 6-130 

Tend to farm  

Sol 55: Soybeans mature 

Sol 67: Wheat mature 

Sol 75: Potatoes mature  

Sol 125: Sweet potatoes mature  

Sol 130: Peanuts mature 

Sol 130: Self-sufficient food source achieved  

Perform EVAs on regular schedule 

Perform IVAs on regular schedule 

Perform Exercise on regular schedule  

Fig. 6  Sols 0 through 615 of the general mission plan
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To use this class of problems as an example of AMSE’s 
utility, it is considered that a member of Crew Alpha breaks 
her arm on sol 771 when she falls from a ladder in the 
farm. Analysis using AMSE is performed to determine how 
work should be reassigned to give them the necessary time 
(approximately 70 sols) for their arm to heal with minimal 
effects on the mission health. Additionally, to maintain 
desired scientific yield and continue to perform appropriate 
maintenance actions on mechanical systems, work must be 
reassigned to ensure no EVAs are canceled.

5  Results and discussion

For each of the cases described above, an initial round of 
AMSE is performed for the model of the crisis and then 
options are explored until an acceptable level of mission 
success is achieved. Acceptable levels of success include 
situations in which the total probability of mission success 
over the entire span of the mission does not go below 95% or 
a case in which no individual’s probability of survival goes 
below 98% for the mission.

5.1  Inaccurate mission calculations

For the case of inaccurate mission calculations, a mission 
plan is created that vastly underestimated the quantity of 
food that is necessary for the survival of the crew. The initial 
mission plan yields a probability of mission success of 0.5% 
with the mean probability of survival for each crew member 
being only 26.6%. The results of the analysis are shown in 
Fig. 7. Over the length of the mission, the average weight 
of the astronauts’ decreases from 62.50 to 47.99 kg which 
presents a serious danger from starvation and malnutrition.

Allowing for the possibility that Crew Alpha could use 
the farm section from Crew Beta’s habitat to grow more 
food, and that Crew Beta can bring along a third farm unit, 
a solution is found after 1 iteration of AMSE that achieves a 
probability of mission success of 95.9%. Under this configu-
ration of the mission, 50, 60, 115, 90, and 5 m2 are allocated 
for soybeans, potatoes, peanuts, wheat, and sweet potatoes, 
respectively. This plan also allows for all planned work to 
be continued normally without disruption. The results of the 
analysis are shown in Fig. 8.

5.2  Inability to farm

Similar to the first case, the inability to farm presents a risk 
from starvation. In this case, only 405-sols worth of rations 
are brought along to support a 3025 kcal/day diet. Again, 

Crew Beta is able to adjust what they bring along to help 
solve the problem. However, Crew Beta does not arrive until 
sol 770, well after the point of starvation if no other mitigat-
ing actions are taken. The success and survivability plots for 
this case are presented in Fig. 9.

If no action is taken, then the probability of mission suc-
cess is effectively 0% due to the astronauts starving to death 
around sol 4501.

The first option that investigated involves rationing the 
food to evenly split portions across all 770 sols, which while 
still insufficient in total calories, at least keeps the food from 
running out. However, it is found that just rationing the food 

Fig. 7  Inaccurate caloric needs (top) instantaneous survival rate, (bot-
tom) mission success over time

1 This assumes no self-sacrifice or other extreme solutions.
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leads to loss of crew due to starvation sooner due to them 
being malnourished earlier on by dramatically reducing 
intake of calories, but not reducing their need caloric usage. 
The associated plots can be found in Fig. 10.

AMSE is performed again, and again the reserve of food 
is rationed to extend available food as long as possible, but 
all EVAs and exercise are canceled, and the rest/sleep period 
is extended from 8.6 h per day to 16.6 h per day. While this 
approach completely halts any planned scientific endeavors, 
it is enough to keep from dramatic weight loss, and the prob-
ability of mission success (defined as keeping the astronauts 
alive) increases to 92.99% with a mean individual survival 
probability of 98.2%. This is considered a sufficient solution 
given the constraints of the problem. The associated plots 
for this mission plan can be found in Fig. 11.

One potential consequence of this strategy is that the 
crew’s ability to respond to additionally crises is severely 
limited, and taking any actions could potentially lead to 
starvation. This is compounded by the canceled EVAs and 
reduced IVAs, which has numerous effects on the health of 
physical systems that require scheduled maintenance. For 
example, when the EVAs are canceled, the SEVs are likely 
to accumulate damage from ordinary Martian weather lead-
ing to reduced system health and a higher probability of 
system loss. While the SEVs are not critical to mission sur-
vival and their failure does not affect mission success, the 
potential scientific yield of the mission is limited after rescue 
by Crew Beta is limited by their loss.

Fig. 8  Inaccurate caloric needs with larger farm (top) instantaneous 
survival rate, (bottom) mission success over time

Fig. 9  Inability to farm (top) instantaneous survival rate, (bottom) 
mission success over time
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5.3  Broken arm

The broken arm problem investigates what occurs if some-
one becomes temporarily incapacitated. In this case, astro-
naut A of Crew Alpha is unable to perform EVAs for 70 sols 
beginning on sol 771. EVAs are required to be performed by 
two astronauts at a time in the mission plan to improve EVA 
safety. However, if EVAs are canceled, scheduled system 
maintenance tasks and scientific opportunities are reduced. 
To keep up scientific yield, the EVA schedule is temporarily 
revised to the one shown in Table 2.

This leads to no significant reduction in the probability of 
mission success, with a probability of success of 95.9%. The 
resulting associated plots can be seen in Fig. 12.

While this adjustment in task planning does not seem 
to have a significant influence on the probability of mis-
sion success, it does have some effects on the individual 
astronauts that may result in potential consequences. For 
example, over the course of the mission, astronauts B, C, 
and D end up being exposed to an additional 0.2 mSV of 
radiation, which is equivalent to receiving two chest X-rays.

For this case, we considered the astronaut completely 
incapacitated for the purpose of EVA’s, but their other work 
assignments remained the same.

5.4  Discussion of results

In the cases presented above, AMSE is used to make risk-
informed space mission control decisions. In each case, 

Fig. 10  Inability to farm with rationing (top) instantaneous survival 
rate, (bottom) mission success over time

Fig. 11  Inability to farm with extra rest (top) instantaneous survival 
rate, (bottom) mission success over time
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the mission model is reconfigured within several minutes 
and analysis can be run in under 80 s. This allows for rapid 
response to mission crises. The selected crises for the case 
study were relatively simple with fairly apparent solutions, 
but each selected case was representative of a different 
class of space mission crisis that may be encountered. The 
selection of simple cases was intentional to focus on the 

demonstration of the AMSE as a method for risk-informed 
space mission decision making.

In the initial investigation of the risk-informed space mis-
sion model used for this study, it was found that the prob-
ability of mission success was very highly dependent on 
nutrition of the astronauts, and that maintaining a healthy 
astronaut and a productive mission would be a difficult bal-
ancing act. Additionally, if the quantity of work is increased, 
even temporarily, the caloric load can be thrown greatly out 
of balance. On Earth, this would not be a significant prob-
lem, because more food can be acquired, but on Mars, addi-
tional food could take several years to arrive as flight times 
are highly dependent upon launch windows. This observa-
tion was part of the inspiration for having multiple cases that 
focused on food-related crises.

The uniqueness of AMSE in providing a decision support 
tool that uses real-time system health information to help 
mission operations managers in rapidly developing unan-
ticipated scenarios positions AMSE to be a useful addition 
to space missions. The underlying system models that pro-
vide risk analysis capability are directly modified by PHM 
information from the physical systems. In the case of the 
case study, the systems are simulated; however, we have 
conducted initial testing on a PHM testbed platform with 
promising results.

While the case study focused on crises that were rela-
tively easy to avert, the AMSE method is capable of han-
dling much more complicated system failure scenarios. 
The limiting factor of the AMSE method’s ability to model 
and analyze a mission is the availability of computational 
resources and the resolution of the developed mission model.

5.5  Generalization of the method

While the presented case study focuses on space mission 
control decisions, the AMSE method can be used to make 
decisions for the design and management of a wide variety 
of systems. As demonstrated in the case study, AMSE can 
be used to model traditional engineering systems, such as 
electrical and mechanical systems; however, AMSE has been 
demonstrated to handle less traditional biological systems 
and environmental systems.

One concept that is important to understand when it 
comes to generalizing AMSE to problems outside of space 

Table 2  Revised EVA nine-Sol 
Schedule

Crew 
member

Sol 1 Sol 2 Sol 3 Sol 4 Sol 5 Sol 6 Sol 7 Sol 8 Sol 9

A
B EVA EVA EVA EVA
C EVA EVA EVA EVA
D EVA EVA EVA EVA

Fig. 12  Broken arm with revised EVA schedule (top) instantaneous 
survival rate, (bottom) mission success over time
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mission risk assessment is the concept of missions and mis-
sion success. While in the demonstrated case study, a very 
traditional definition of mission is used, a mission is any 
series of tasks that are necessary for the completion of a 
goal, dependent on the state of systems for completion, and 
chronologically ordered. One example of this could be the 
design and production of a chair. This model could include 
human designers, computer systems, tools for manufacture, 
human craftspeople, and could even extend to transit sys-
tems for delivery. The objective that defines success for this 
system is delivery of the correct number of chairs to a buyer 
(though secondary conditions of human safety could also 
be considered). A nested super system model of the entire 
process could be developed, and tasks could be defined that 
account for everything that must be done in production. 
AMSE could then be used to explore potential problems 
in production, as well as used in crises to determine poten-
tial solutions to problems as they arise, while maintaining a 
long-term big picture view of success.

6  Conclusion and future work

Active mission success estimation (AMSE) is a method for 
the modeling and analysis of space missions for the purpose 
of risk analysis and informed decision making based on real-
time PHM information. The bulk of the AMSE method con-
sists of three phases. The first phase of AMSE is modeling. 
In this phase, a functional model of the mission containing 
PHM information is developed using a nested super systems 
approach to represent multiple interacting mission compo-
nents. In addition to the functional model of the system, a 
mission plan is developed that contains a list of all tasks 
to be performed over the course of the mission. The tasks 
are represented by task modules, which contain quantitative 
information and mathematical models necessary to analyze 
the effect of the task on the health of systems within the 
mission framework. The second phase of AMSE, analysis, 
utilizes the functional model of the system and the mission 
plan to perform calculations to determine the probability of 
mission success over time. This phase is highly dependent 
on analysis of the system health models developed in Phase 
1. The third and final phase of AMSE involves the interpre-
tation of the results of the analysis to inform mission control 
decisions.

The AMSE method is shown to be an effective tool for 
risk-informed PHM-driven decision making using analysis 
conducted on functional models representing real systems. 

This is demonstrated through the evaluation of three poten-
tial crises that could occur during a space mission.

Through the case study, AMSE shows its ability to be 
rapidly reconfigured in highly detailed ways.

6.1  Future work

AMSE is a promising tool for risk-informed mission risk 
analysis and decision making, but is currently limited in its 
user-friendliness and lacks any form of GUI or developed 
UI and instead relies on the user to make changes to the 
code performing the analysis. While this is doable, it is a 
non-ideal implementation and it vastly reduces the ability for 
AMSE to be used by new people. Therefore, development 
of a GUI for the AMSE code to be run through is given a 
high priority.

Another area for improvement on AMSE is in the sourc-
ing of functional models which include PHM data and health 
modeling. Currently, models must be developed for each 
system that is to be included in the nested super systems 
framework. However, a database or design repository could 
be developed of common models for use in AMSE. This 
would enable the more rapid creation of mission model and 
improved configurability speeds by allowing for more rapid 
interchanging of systems or sub-systems.

A final avenue of interest for future investigation is the 
use of AMSE with an Artificial Intelligence (AI) to enable 
autonomous decision making under risk. For the case study 
presented in this paper, a human was able to try multiple 
solutions to the problem scenarios relatively quickly, how-
ever, as the problems get bigger and more complex, they 
could become impossible for a human to manage. However, 
if an autonomous decision maker was developed that could 
efficiently use AMSE to respond to crises and find multiple 
potential solutions, we could vastly reduce the time needed 
to find a solution to a problem. Developing better methods 
for autonomous decision making in hazardous and unknown 
environments could have applications in a wide variety of 
fields including, self-driving cars, home robotics, national 
security, and space exploration.
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Appendix 1

Task Duration (sec) Systems used System health factors Resources used Quantity

Sleeping 30,960 Habitat module Time inhabited 30,960 (s) Calories burned ~ 8.5 (kcal/kg) × 
Astronaut weight 
(kg)

Physical intensity 0.5/10

Eat food 7200 Habitat module Time inhabited 7200 (s) Calories burned ~ 2.8 (kcal/kg) × 
Astronaut Weight 
(kg)

Physical intensity 1.0/10 Food eaten 3025 (kcal) Gained
Exercise 7200 Habitat module Time inhabited 7200 (s) Calories burned ~ 17.4 (kcal/kg) × 

Astronaut weight 
(kg)

Physical intensity 9.5/10

Maintain farm 3600 Farm module Time inhabited 3600 (s) Calories burned ~ 4.4 (kcal/kg) × 
Astronaut Weight 
(kg)

Physical intensity 4.5/10 Water used ~ 20 (L/m2 of Crops 
Being Grown)

Food produced ~ 8.4 (kg/day) At 
full production

EVA 28,800 Air lock Uses 2 Calories burned ~ 25 (kcal/kg) × 
Astronaut weight 
(kg)

EMU Time inhabited 28,800 (s)
Physical intensity 3.0/10

SEV Time inhabited 3600 (s)
Physical intensity 1.7/10

IVA 10,800 Habitat module Time inhabited 10,800 (s) Calories burned ~ 5 (kcal/kg) × 
Astronaut weight 
(kg)

Physical intensity 1.3/10

Appendix 2

Sol Hour Radiation Temperature Starvation Exhaustion Injury

0 8.6 1.53E−06 5.09E−80 7.48E−12 9.87E−10 1.00E−09
0 9.6 1.53E−06 6.02E−10 1.25E−08 1.37E−07 8.00E−06
0 13.6 1.53E−06 1.32E−37 1.56E−08 2.33E−07 7.20E−06
0 15.6 1.53E−06 3.63E−19 1.64E−08 1.74E−06 1.00E−08
0 19.6 1.53E−06 1.32E−37 2.04E−08 4.50E−06 7.20E−06
0 24.6 1.53E−06 2.19E−28 1.24E−08 2.67E−05 1.00E−08
1 33.2 1.53E−06 5.09E−80 8.49E−12 9.87E−10 1.00E−09
1 36.2 1.53E−06 6.02E−10 7.96E−09 1.37E−07 1.00E−05
1 37.2 1.53E−06 6.02E−10 8.51E−09 2.33E−07 1.00E−05
1 38.2 1.53E−06 6.02E−10 9.10E−09 3.91E−07 1.00E−05
1 39.2 1.53E−06 6.02E−10 9.73E−09 6.49E−07 1.00E−05
1 40.2 1.53E−06 6.02E−10 1.04E−08 1.07E−06 1.00E−05
1 41.2 1.53E−06 6.02E−10 1.11E−08 1.74E−06 1.00E−05
1 42.2 1.53E−06 6.02E−10 1.19E−08 2.81E−06 1.00E−05
1 43.2 1.53E−06 6.02E−10 1.27E−08 4.50E−06 1.00E−05
1 47.2 1.53E−06 1.32E−37 1.41E−08 7.12E−06 1.00E−08
1 49.2 1.53E−06 3.63E−19 1.82E−08 4.07E−05 2.00E−05
2 57.8 1.53E−06 5.09E−80 1.38E−11 9.87E−10 1.00E−09
2 60.8 1.53E−06 6.02E−10 1.17E−08 1.37E−07 1.00E−05
2 61.8 1.53E−06 6.02E−10 1.25E−08 2.33E−07 1.00E−05
2 62.8 1.53E−06 6.02E−10 1.33E−08 3.91E−07 1.00E−05
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Sol Hour Radiation Temperature Starvation Exhaustion Injury

2 63.8 1.53E−06 6.02E−10 1.42E−08 6.49E−07 1.00E−05
2 64.8 1.53E−06 6.02E−10 1.52E−08 1.07E−06 1.00E−05
2 65.8 1.53E−06 6.02E−10 1.62E−08 1.74E−06 1.00E−05
2 66.8 1.53E−06 6.02E−10 1.73E−08 2.81E−06 1.00E−05
2 67.8 1.53E−06 6.02E−10 1.85E−08 4.50E−06 1.00E−05
2 71.8 1.53E−06 1.32E−37 2.05E−08 7.12E−06 1.00E−08
2 73.8 1.53E−06 3.63E−19 2.64E−08 4.07E−05 2.00E−05

Appendix 3
Mission Plan

• Sol-770
– Crew Alpha Equipment Arrives on Planet

• Sol 0

– Crew Alpha Arrives on the Surface
– Perform EVAs and IVAs to verify critical Martian 

Surface Habitat functionality
– Unpack transit vehicle
– Set up habitat module

• Sol 1–5

– Perform EVAs to validate external less critical func-
tions

– Begin Setup for experimentation and
– Start farm

• Sol 6-130

– Tend to farm

• Sol 55: Soybeans mature
• Sol 67: Wheat mature
• Sol 75: Potatoes mature
• Sol 125: Sweet potatoes mature
• Sol 130: Peanuts mature
• Sol 130: Self-sufficient food source achieved

– Perform EVAs on regular schedule
– Perform IVAs on regular schedule
– Perform Exercise on regular schedule

• Sol 131–615

– Perform EVAs on regular schedule
– Perform IVAs on regular schedule
– Perform Exercise on regular schedule

• Sol 616–620

– Begin verification of Beta Martian Surface Habitat 
during EVAs

– Perform IVAs on regular schedule
– Perform Exercise on regular schedule

• Sol 621–769

– Sol 621
• Begin Farm Beta

– Tend to Farm Beta

• Sol 671: Soybeans mature
• Sol 688: Wheat mature
• Sol 696: Potatoes mature
• Sol 746: Sweet potatoes mature
• Sol 751: Peanuts mature
• Sol 751: Self-sufficient food source achieved

– Perform EVAs on regular schedule
– Perform IVAs on regular schedule
– Perform Exercise on regular schedule

• Sol 770
– Crew Beta Arrives on surface

• Perform EVAs and IVAs to verify critical habitat 
functionality

• Unpack transit vehicle
• Set up habitat module

• Sol 771–775

– Crew Alpha

• Perform EVAs on regular schedule
• Perform IVAs on regular schedule
• Perform Exercise on regular schedule

– Crew Beta

• Perform EVAs to validate external less critical 
functions

• Begin Setup for experimentation and
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• Sols 776–1050

– Crew Alpha

• Perform EVAs on regular schedule
• Perform IVAs on regular schedule
• Perform Exercise on regular schedule

– Crew Beta

• Perform EVAs on regular schedule
• Perform IVAs on regular schedule
• Perform Exercise on regular schedule

• Sols 1051–1069

– Crew Alpha

• Begin Prep for departure
• Wrap up experiments
• Perform EVAs to hand off tasks to Beta
• Prepare habitat Alpha for vacancy
• Will be used by Crew Gamma

– Crew Beta

• Perform EVAs on regular schedule
• Perform IVAs on regular schedule
• Perform Exercise on regular schedule

• Sol 1070

– Crew Alpha Departs from Martian Surface
– End AMSE analysis

• Sol 1540
– Crew Gamma arrives and moves into habitat Alpha
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