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A gap exists in the methods used in industry and available in academia that prevents

customers and engineers from having a voice when considering engineering risk appetite

in the dynamic shaping of early-phase conceptual design trade study outcomes. Current

methods used in Collaborative Design Centers either collect risk information after a

conceptual design has been created, treat risk as an afterthought during the trade study

process, or do not consider risk at all during the creation of conceptual designs. This

dissertation proposes a risk-informed decision making framework that offers a new way

to account for risk and make decisions based upon risk information within conceptual

complex system design trade studies. A meaningful integration of the consideration of

risk in trade studies is achieved in this framework thus elevating risk to the same level as

other important system-level design parameters. Trade-offs based upon risk appetites

of individuals are explicitly allowed under the framework, enabled by an engineering-

specific psychometric risk survey that provides aspirational information to use in utility

functions. This dissertation provides a novel framework and supporting methodologies

for risk-informed design decisions and trades to be made that are based upon engineering

risk appetites in conceptual design trade studies.
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Chapter 1 –Introduction

A gap exists in industry and academia in giving customers and engineers a voice when

considering risk appetite in the dynamic shaping of the outcome of early-phase concep-

tual design trade studies. Current methods of capturing risk data during conceptual

design trade studies either consider risk only after a conceptual design has been created,

treat risk as a secondary concern to developing conceptual designs, or do not consider

risk at all during the creation of conceptual designs via trade studies. This dissertation

proposes a framework to fill the gap in existing academic and industry methods to allow

customer and engineering risk preference to dynamically shape the outcome of early-

phase conceptual design trade studies. A framework is developed that allows individual

participants in a collaborative trade study to trade risk as a system-level parameter and

further takes into account risk appetite of both individual engineers and customers. In

this dissertation, risk appetites are determined by developing and using a psychometric

risk appetite test and scale. This scale is used to generate risk utility functions that

are broadly applicable to a wide variety of engineering risk-informed decision making

cases and without the need for time-consuming lottery methods. The framework and

methods developed in this dissertation are verified in a simulated Collaborative De-

sign Center (CDC) using undergraduate and graduate student participants and in a

computer simulated CDC environment.
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1.1 Intellectual Merit

This dissertation offers a new framework to account for and make decisions based upon

risk information within conceptual complex system design trade studies. This frame-

work meaningfully integrates the consideration of risk into trade studies, thus elevating

the consideration of risk in conceptual design trade studies to the same level of con-

sideration as other system-level metrics, parameters, and design choices. The approach

specifically allows design decisions and design trade-offs to be made based upon the

risk preferences of individual engineers, and the risk preferences of customers. The

research in this dissertation has the potential to change the outcome of, and bolster

trade studies with additional validity via a more rigorous consideration of risk and risk

appetite during the trade study process. This dissertation provides a framework for

risk-based design decisions to be made based upon risk appetites which will inspire

more confidence in the resulting conceptual designs.

1.2 Broader Impacts

The success of the research effort chronicled in this dissertation will yield benefits for

education, for industrial and government customers of CDCs, and for CDCs themselves.

Using the framework developed in this dissertation, CDCs will benefit by creating con-

ceptual designs that quantitatively take into account risk appetite when making risk-

based design decisions. Those decisions will be made during the trade study process

rather than before or after a conceptual design has been created as a result of risk being

elevated to a tradeable system-level variable. Government and industrial customers of

CDCs will be the beneficiaries of conceptual designs that match their risk appetites.
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These designs will be quantitatively generated, and the risk-based decisions made as

part of the trade study process will be made based upon the risk appetites of the

customers. In academia, undergraduate education will benefit from the risk appetite

component of this research being integrated into design curricula as has been done with

the Meyers Briggs Personality Type test. At the graduate level, courses on complex

system design will benefit from the framework developed in this research. The frame-

work can be taught as a component of trade study methods, thus expanding students’

ability to make risk-based decisions and account for risk appetite in trade studies.

1.3 Organization of this Dissertation

This dissertation is organized into a number of chapters; several of which contain a total

of three journal articles that are either accepted for publication, awaiting acceptance

after revision, submitted, or will be submitted shortly. Chapter 2 provides background

information on several relevant areas of the literature including design trade study fun-

damentals, conceptual design centers, the psychology of risk attitude, an engineering

definition of risk attitude, risk analysis tools, decision-based design, and risk-based util-

ity theory. Chapter 3 introduces a risk-informed decision making framework for early-

phase conceptual design of complex systems. Chapter 4 presents a journal manuscript

submitted to Research in Engineering Design (RIED) that presents a case for trad-

ing risk in complex conceptual design trade studies. Chapter 5 presents a journal

manuscript submitted to Journal of Mechanical Design (JMD) on measuring engineer-

ing risk attitudes using a psychometric risk scale. Chapter 6 presents a method of

considering risk attitude using utility theory in risk-based design that is accepted for

publication in Artificial Intelligence for Engineering Design, Analysis, and Manufactur-
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ing (AIEDAM). Chapter 7 presents development; implementation in MATLAB, Excel,

and ModelCenter; and simulations of the risk-informed decision making framework for

early-phase conceptual design of complex systems. Future work is outlined in Chap-

ter 8. The dissertation concludes in Chapter 9 with a review and discussion of the

dissertation’s contributions.
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Chapter 2 –Background

The Risk-Informed Decision Making Framework developed in this dissertation draws

from several disparate bodies of research and knowledge. This chapter reviews the

most pertinent information that is necessary for the framework and objectives.

2.1 Design Trade Studies Fundamentals

Design trade studies are used in conceptual complex system design to generate different

design alternatives and compare amongst them. Trade studies can be performed either

automatically using software packages or by teams of people. Whereas automated,

computer generated trade studies can create many thousands of design points quickly,

manually-conducted human generated trade studies are often seen as having higher

fidelity and are more likely to be accepted [1].

Metrics such as cost, mass, power, volume, and other parameters are often traded in

such trade studies. Each subsystem within a complex system is initially allocated spe-

cific amounts of the constraining parameters. During the course of the design process,

several subsystems are often found to be lacking in one or multiple constraint parame-

ters but have additional quantities of other parameters available. These parameters can

be traded between different subsystems and contain intrinsic value of varying degrees

for different subsystem designers [2, 3, 4]. The resulting conceptual designs can then be

ranked according to appropriate selection rules [5, 6].
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Where there is a defined “measure of goodness,” the basic mathematical concept

behind trade studies is simple and straight-forward. Trade-offs are made between de-

sign variables to achieve maximum design utility [7]. This generally takes the form of

max f(U) where U represents relevant system utility metrics.

This simple equation provides the foundation for a wide range of analytic methods

that all aim to find the optimal design given system constraints. Many different methods

have been developed to computationally find the optimal solution. The difficulties,

however, are in developing a series of equations that adequately model the system to

then efficiently find the optimum solutions to those equations [7].

2.2 Conceptual Design Centers

Many companies and institutions have teams who perform trade studies as part of the

early complex system design process. The first and most cited example is the National

Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL)’s

Project Design Center (PDC) and the associated design team, commonly referred to

as Team X. The group, formed in June 1994 [8], functions as a conceptual spacecraft

mission design team and includes engineers and scientists from all major spacecraft

mission subsystems co-located in the PDC which gives Team X the ability to complete

spacecraft architecture, mission, and instrument design trade studies very rapidly [9].

The design iteration portion of most Team X trade studies are completed in two to

three days, compared to three to nine months to complete a comparable trade study

and reduced costs by a factor of five [10]. The success of Team-X spurred other NASA

research centers to adopt the methods used by Team-X [11, 12, 13, 14, 8]. Similarly, the

European Space Agency (ESA) has replicated the methods used by Team-X [15]. A col-
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lection of academic institutions have also created Collaborative Design Centers (CDCs)

to perform trade studies for simulated complex system design [8, 1, 16, 17]. Finally,

several private companies have adopted the Team-X approach to Trade Studies [18, 8].

Within Team X and other CDC groups, there are often desired ranges of system

level risk. While it might appear that a design minimizing risk is always desired this is

often not the case. Sometimes designs with a specific level of risk above the absolute

potential minimum are desired. In the case of Team X, this is due to the desire to launch

missions that are both cost-effective and challenging. Missions at NASA are selected

for further development based on several factors including the mission risk profile. A

risk target range has been defined that balances pushing the boundaries of engineering

and science with a desired cost and level of mission success [19].

Some CDCs currently employ tools and methods to capture risk in the conceptual

design process. However, establishment of mission risk posture usually happens before

conceptual designs have been generated, and risk evaluation happens afterward; or risk

evaluation is part of a process that happens in lieu of trade studies; or worse yet, risk

does not play any role in early conceptual design development. But there is generally

no accepted method to measure risk within each subsystem model as a parameter to

be controlled and developed by individual subsystem chairs during conceptual design

trade studies.

The Risk and Rationale Assessment Program (RAP) tool is a Probabilistic Risk

Assessment (PRA)-based assessment software package that is employed during a trade

study session [20]. Each subsystem chair has the ability to enter information into the

tool as he/she sees fit. Observations indicate that during Team-X sessions RAP is

either used as an afterthought once most of the conceptual design work had finished

or not used at all. Further, risk cannot be traded within RAP nor does it find its way
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into the trade studies. Instead risk assessment is conducted as an afterthought to the

conceptual designs being created. Other groups outside of NASA have also used tools

similar to RAP and with similar implementations yielding similar results and problems

[21, 22, 23].

In addition to RAP, JPL has also developed Defect Detection and Prevention

(DDP), a tool that helps engineers determine what mitigation steps will provide the

largest reduction in system-level risk [24]. Literature on DDP does state that risk should

be traded and provides a framework for trading but trade studies are not suggested to

be performed in CDCs. The literature does suggest that risk can be compared against

performance metrics to find the optimum level of risk versus performance; but to exam-

ine risk, conceptual designs must be developed and solidified before the DDP method

can be used to analyze risk [25].

While RAP and similar tools have been adopted in many CDCs and DDP has

found some use outside of the CDC environment, several other methods have remained

purely academic. For instance, a risk management method developed by Dezfuli et al.

embeds the NASA Continuous Risk Management (CRM) process into a broader decision

framework [26]. The method presents a risk management approach intended to be used

throughout the product life-cycle. Performance measures and NASA’s CRM process

are relied on to assess risk. While the method does state that risk must be accounted

for in the conceptual design phase and further briefly mentions the trade study process,

the actual analysis of risk still happens after conceptual designs have been created [27].

Thus the method does not place risk directly in the trade study process.
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2.3 The Psychology of Risk Attitude

The ’classic’ definition of risk is the parameter that differentiates between the util-

ity functions of different individuals [28, 29]. The Expected Utility (EU) hypothesis

theorizes that the preference of an individual choosing between risky options can be

determined by a function of the return of each option, the probability of that option

coming to fruition, and the individual’s risk aversion [30]. The EU framework and

related methods including prospect theory [31] traditionally view the curves of an indi-

vidual’s utility function as denoting either risk aversion or risk seeking. The definition

of risk aversion in the context of risk attitudes is framed in the context of someone

who prefers to take the expected value of a gamble over playing the gamble as being a

person who does not like to take risks [32]. As a result, risk attitude can be defined as a

person’s position on the risk aversion-risk seeking axis and is thought of as a personality

trait.

However, two issues have arisen that challenge the idea of risk attitudes in the

context of EU being a personality trait: cross-method utility instability and inconsistent

risk profiles across risk domains. When different methods are employed to measure

people’s utility, different classifications of risk-taking or risk aversion often result [33].

Further, individual respondents are not consistently risk averse or risk seeking across

different risk domains [34].

The validity of EU-based risk attitude assessment is limited due to these issues.

There has been little success in predicting individuals’ choices and behaviors in domains

not assessed by EU-based instruments [35]. Even with the limitations of EU-based

survey instruments, many are still in use [36].
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A more recent method of determining risk attitude takes inspiration from the world

of finance [37]. The risk-return framework of risky choice assumes people’s preferences

for risky options reflects a trade-off between riskiness of a choice and the Expected

Value (EV). The financial world equates riskiness of an option with its variance. In

psychology risk-return models, perceived riskiness is treated as a variable that can

be different between individuals due to differences in individuals’ content and context

interpretations [38, 39]. The risk-return framework allows for people to have similar

perceptions of risk and return between different domains but in one domain prefer risk

while in another prefer caution [40]. Having such preferences and perceptions would

result in different outcomes, as the risk-return framework predicts.

The term perceived risk attitude, previously conceptualized as risk-repugnance [41],

was coined to reflect the assumption that risk in its pure form is negative and undesirable

but that perceived risk might be attractive to some individuals in certain domains and

circumstances [42]. Variances in perceived risk attitude are thus a result of discrepancies

between the perception of the risks and benefits as determined by a decision-maker and

an outside observer. This is exemplified in research conducted in the management field

where what differentiates between entrepreneurs and managers is a highly optimistic

perception of risk on the part of the entrepreneurs rather than a greater preference for

risk, as one might expect [43].

Many studies have highlighted differences in the perception of the riskiness of de-

cisions in individuals, between groups, and between cultures [44, 45]. Differences in

risk perception have also been found due to outcome framing [46]. In the context of

risk-return based models, perceived risk attitude has been found to have cross-situation

and cross-group consistency when differences in the perception of riskiness are factored
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out [39, 40]. Rather than differences in risk attitude, risk-return models suggest that

the way people perceive risk affects the choice outcomes.

In summary, risk attitudes vary by domain, so that the attitude to taking risks

at work may differ from the attitude to taking risks at home. One may enjoy taking

risks in leisure activities, but be risk averse handling of financial affairs. To assess risk

perceptions and attitude toward perceived risk in different domains of risk, Weber et

al. developed the Domain-Specific Risk-Taking (DOSPERT) test and related scale [40,

47]. Six independent domains were identified including ethical, investment, gambling,

health/safety, recreational, and social domains [40, 48, 49, 50]. Risk-taking was found to

be highly domain-specific between the identified domains where individual respondents

were risk averse in some domains and risk-neutral or risk seeking in others. Respondents

were found to not be consistently risk averse or risk seeking across the six domains.

It was also found that preference for risk seeking or risk aversion was influenced by

the perceived benefits and risks of the activity in question. This resulted in identify-

ing two psychological variables including risk perception and attitude toward perceived

risk, as had been found in previous risk-return based models [43]. Previous risk attitude

indexes have been confounded by not distinguishing between the two psychological vari-

ables of risk perception and attitude toward perceived risk [51]. Distinguishing between

the risk perception and risk attitude variables is largely irrelevant if only prediction

of future actions is desired. However, the distinction between these variables becomes

important when risk-taking is assessed with the goal of changing risk-taking behavior

[40].

Since the DOSPERT scale was developed and validated, many other studies have

replicated the results. Strong correlation was found with the various subscales of Bun-

der’s scale for intolerance [52] and with Zuckerman’s sensation-seeking scale [53]. Paul-
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hus’ social desirability scale [54] was found to have significant correlation between

the impression management subscale and the ethics and health/safety subscales of

DOSPERT. Thus, the DOSPERT scale was found to have favorable correlations with

established scales. The DOSPERT scale has also been translated into several different

languages and contexts including the DOSPERT-G scale, a German-language version

[55], a French-language DOSPERT scale [56], and others [47]. The DOSPERT scale is

quickly becoming the most preferred risk attitude scale in psychology for its predictive

abilities and its ability to show whether observed risk behavior is based upon the per-

son’s perception of risk or the person’s attitude toward the perceived risk, which allows

for intervention and behavior modification.

2.4 An Engineering Definition of Risk Attitude

The definition and application of risk in engineering is more straight-forward than in

psychology. The ISO 31000:2009 document [57] defines risk as the effect of uncertainty

on objectives. An effect is a positive or negative deviation from the expected. Objectives

are defined as having different aspects such as environmental, health and safety, and

financial goals, and can be applied at different levels of a project or organization. The

ISO 31000:2009 definition of risk is further defined as the probability of occurrence of an

event multiplied by the severity of the consequences. It should be noted that uncertainty

is often defined as a lack of knowledge about system specifications and errors resulting

from imperfect models [58]. Some researchers further break down uncertainty into

multiple subcategories that often contain elements of risk, reliability, and robustness

[59]. For the purposes of this research, the ISO 31000:2009 definition of risk shall be

used in the context of engineering.
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If this is used as the operating definition of risk, then risk attitude in engineering

is the ’state of mind’ of the engineer in response to the perception of uncertainty on

objectives [60]. The engineer’s attitude will influence actions, or inactions, taken. The

behavior an engineer takes toward risk can be to retain, pursue, take, or turn away from

that risk. In other words, when presented with a situation, it is important to determine

how the engineer’s risk attitude will influence behavior.

2.5 Risk Analysis Tools

Risk is generally defined in engineering as the probability of occurrence multiplied

by the severity of impact [57]. Often engineers group other related concepts such as

reliability [61], robustness [62], and uncertainty [58] with the strict definition of risk

into a meta-risk category that is also referred to as “risk.”

Many methods exist to analyze and account for risk in the design process. Ex-

amples include: Reliability Block Diagram (RBD) [63], PRA [64], Failure Modes and

Effects Analysis (FMEA) [65], Fault Tree Analysis (FTA) [66], and other methods are

commonly found in industry. Other methods such as Functional Failure Identification

Propagation (FFIP) [67], Function Failure Design Method (FFDM) [68], and Risk in

Early Design (RED) [69] are being actively developed in academia and will see industrial

deployment in the future.

Several tools have been developed to support risk analysis in trade studies for CDCs.

Team-X uses RAP, a PRA-based assessment software package [20]. The RAP tool is

used to capture unusual risks that are identified during trade study sessions. One en-

gineer is tasked with cataloging these risks and with the assistance of stakeholder sub-

systems engineers develops likelihood and impact assessments, and mitigation methods
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with associated costing information. Other risk analysis programs and methods are

under development and in use by other CDCs.

The methods, such as FTA and FMEA, and tools, such as trade studies, commonly

deployed in industrial settings, view risk as an expected value choice. For example, if

an engineer must make a decision between one risk that has a 1% chance of occurrence

and has a consequential cost of $10,000 and another risk that has a chance of 0.1%

of occurrence and a consequential cost of $100,000, engineering risk methods would

indicate that both risks are equal with regards to expected value. Therefore, either can

be chosen with the same expected value outcome. However, this ignores individual and

company risk preferences.

2.6 Decision-Based Design

To address the growing recognition within industry and the engineering research com-

munity [70, 71, 72, 73] that decision-making is a fundamental part of the design pro-

cess, the Decision-Based Design (DBD) framework was developed. A decision-theoretic

methodology is utilized to select preferred product design alternatives and set target

product performance levels. A single selection criterion, V , in the DBD implementation

represents economic benefit to the enterprise [73]. This approach avoids the difficulties

of weighting factors and multi-objective optimization which can violate Arrow’s Impos-

sibility Theorem [74]. A utility function, U , which expresses the value of a designed

artifact to the enterprise when considering the decision-maker’s risk attitude, is created

as a function of the selection criterion, V . A preferred concept and attribute targets

are selected through the maximization of enterprise utility.
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In order to effectively use the single criterion approach to DBD, the selected criterion

must be able to capture all of the issues involved in the engineering design such as system

features, costs, risks, physical restrictions, and regulatory requirements. The single

criterion should allow both the interests of the users and producers of the system to

be considered. In most industrial cases, the most universal unit of exchange is money.

Material, energy, information, faults and time can all be assigned a monetary value.

This can be seen in many design decision-making processes and is practiced widely in

industry.

One use of single criterion DBD developed by Hoyle et al. [75] employs profit

as the criterion in a method to determine optimum system configuration for Integrated

Systems Health Management (ISHM). The determination of system profit is made from

the product of system availability and revenue, minus the summation of cost of system

risks and the cost of fault detection. This method can determine optimal ISHM while

also determining the optimum detection/false alarm threshold and inspection interval.

Using the method has been found to increase profit by 11%, decrease cost by a factor

of 2.4, and increase inspection intervals by a factor of 1.5 [75].

2.7 Risk-Based Utility Theory

One approach to analyzing choice outcomes from a non-neutral expected value per-

spective is to use risk-based utility theory [31]. The utility of a range of probabilistic

outcomes can be determined in order to aid decision-makers. This is done by trans-

lating monetary outcomes to utilities. A risk-tolerant decision-maker’s higher intrinsic

value for riskier decisions skews the utility of those decisions higher than a risk-neutral

or risk-averse decision maker’s utility of the same decisions. For a normal distribution
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of outcomes, a risk-tolerant person’s utility distribution will shift to be more heavily

skewed toward higher value outcomes. Utility distributions for risk-averse individuals

will skew more heavily toward lower value outcomes. The risk neutral state does not

weight outcomes in either direction along the utility axis. In other words, different

utilities are found based upon a decision-maker’s risk appetite.

Currently accepted methods of developing utility risk curves require a series of

lotteries to be conducted [31]. Several sets of paired choices are presented sequentially to

an individual. These are often presented as lotteries where a participant selects amongst

paired probabilistic alternatives. A utility risk curve is then fitted to the lottery results.

Common functions include quadratic, logarithmic, and exponential functions [76]. In

currently accepted methods of risk utility curve generation, the choice of which form a

risk utility curve should take is at the discretion of the decision-maker and based upon

results of lotteries. The scale of the value axis of the utility curve is set to the minimum

and maximum limits of the values used to conduct the lotteries.

Developing and conducting lotteries is time-consuming and not intuitive to end-

users [77]. Also, the utility curves derived from lotteries are only valid for the range

of values used in the lottery. Therefore, while useful to experts in many areas, lottery-

based methods of utility risk curve generation are not always useful to practitioners or

lay users.
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Chapter 3 –A Risk-Informed Decision Making Framework for

Early-Phase Conceptual Design of Complex Systems

In this chapter a risk-informed decision making framework for risk and risk appetite

during the early phase conceptual complex system design process is proposed and spe-

cific objectives are laid out which must be completed in order to achieve the goals of

the framework. Subsequent chapters meet these objectives.

3.1 Opportunity for a Risk-Informed Decision Making Framework

Early phase conceptual complex system design trade studies conducted in collaborative

design centers do not currently allow individual subsystem engineers to control risk

models associated with their subsystems. Risk is often an afterthought in the creation of

conceptual designs. Sometimes it is not considered at all. Ignoring or marginalizing risk

information and potential risk-based decisions hurts the utility of the final conceptual

complex system design. Further, risk appetite is not formally taken into account during

conceptual design trade studies. Several methods have attempted to address these issues

but none has fully addressed the problem. A higher utility design that inspires more

confidence in the engineers responsible for creating the design and the customers who

have ordered the design can be realized by the successful development of the framework

and supporting objectives.
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The Risk-Informed Decision Making Framework is completed by integrating the

methods developed in working towards three objectives described next. This is done

by linking traditional engineering risk methods traded in Objective #1 with the risk

appetite curves generated as a result of Objective #3 with the help of the psychometric

risk survey data produced as a result of Objective #2. Decisions between several differ-

ent options, with varying risk profiles, taking into account risk appetites, will thus be

able to be made during trade studies. The framework is implemented and demonstrated

in software in Chapter 7. The framework allows risk to be traded in trade studies as

a system-level parameter. When trade-off decisions involving risk must be made, the

framework provides a method of quantitatively taking into account risk appetites of

engineers, stakeholders, and customers. This empowers subsystem design engineers to

make explicit risk-based decisions that take into account risk appetite during trade

studies.

The following sections discuss how each of the three objectives necessary to realize

the goals of the Risk-Informed Decision Making Framework are met by the development

of the new methodologies detailed in Chapters 4, 5, and 6. This chapter concludes with

discussion of how the objectives will be integrated into the framework and how the

framework will deployed into CDCs.

3.2 Objective #1: Trade Risk as a System-Level Parameter

The first objective is to develop a method of trading risk as a system-level parameter in

trade studies. This objective allows for new design selection preferences to be created

that otherwise would not be available to design engineers. Thus, risk can be brought

on par with other important system-level variables and further can be analyzed during
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the creation of conceptual designs in trade study sessions rather than being considered

after designs have been developed.

3.2.1 Background

Several methods have been developed that relate to Objective #1. A normative method

that attempts to balance cost, risk, and performance for decision makers in preliminary

spacecraft mission design is presented by Thunnissen [78]. The method focuses on uncer-

tainty and classifies it into four different categories (ambiguity, epistemic, aleatory, and

interaction), three subcategories of epistemic uncertainty (model, phenomenological,

and behavioral), three sub-sub categories of model uncertainty (approximation errors,

numerical errors, and programming errors), and four sub-sub categories of behavioral

uncertainty (design, requirement, volitional, and human errors). To deal with the un-

certainties, probabilistic methods and Bayesian techniques [79] are employed. However,

risk in the form of Thunnissen’s uncertainty definitions is not considered during trade

studies. Instead, it is analyzed for a specific subset of the overall mission conceptual

design during the very early stages of conceptual design prior or in lieu of trade studies.

Another method developed by Thunnissen formalizes design margins in trade studies

and also attempts to trade risk in trade studies [80]. However trading risk is presented

as an afterthought to the primary concern of design margins in the method. The risk

model presented simply replaces an expected design constraint. Rather than setting a

fixed minimum value for a design constraint, a 100% risk of failure is produced when the

minimum value is crossed. The primary contribution of the work is the formalization

of margins in trade studies – not implementing risk in trade studies.
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Finally, Charania et al. present a collaborative design method that utilizes Proba-

bilistic Data Assessment to trade risk in trade studies conducted using Phoenix Inte-

gration Inc.’s ModelCenter software package [81]. However risk is treated as a separate

“subsystem” in the trade studies. Risk is not explicitly incorporated into each subsys-

tem model. Rather, like the RAP methods used by Team X and others, one person or

one “subsystem” model is in charge of risk.

In summary, some methods such as RAP and DDP have found use in CDCs and

elsewhere while other methods such as those developed by Thunnissen, Charianian et.

al., and others remain academic. Some of the methods analyze risk after conceptual

designs have been created using trade studies. Others analyze risk prior to trade studies

or bypass trade studies all together. One even analyzes risk within trade studies during

the creation of conceptual designs as a separate subsystem. However, to the authors’

knowledge no method currently places risk within each subsystem model to be controlled

and developed by individual subsystem chairs during the creation of conceptual designs

in trade studies. Research presented in this dissertation fills the gap in existing methods.

3.2.2 Method

Risk has traditionally been an afterthought in the conceptual complex system design

process. Risk is typically only formally assessed after a conceptual design has been

created and does not explicitly play a role in the creation and selection of conceptual

designs. Instead, implicit assumptions are often made about the “riskiness" of concep-

tual design models. This research’s hypothesis is that by moving risk into trade studies

and giving it a place among more traditional system-level variables such as power, mass,

etc., conceptual designs will be explicitly created and selected based on risk, reliability,
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robustness, and uncertainty metrics. Specifically, this research will develop a method of

explicitly trading and evaluating designs based upon risk in design trade studies among

subsystems with the end goal of maximizing system utility and system integrity.

The method develops a risk vector,
ÐÐ⇀
Risk, that is traded as a system-level parame-

ter. Common risk methods such as Risk Priority Number (RPN), Failure Modes and

Effects Criticality Analysis (FMECA), FTA, and others can be used to populate
ÐÐ⇀
Risk.

These risk methods can contain either static models where the models do not change

irrespective of any change in subsystem input variables or they can be dynamic where,

for example, an FTA top level probability of failure would change based on the proba-

bilities attached to the sub-elements of the fault tree. The sub-element probabilities are

no longer static quantities as they would be in a stand-alone FTA. Instead, the sub-

element probabilities are directly fed from input variables that can vary between each

iteration of a trade study model based upon other subsystem models and system-level

parameters. This makes trading risk between subsystems easy as any change in input

variables as a result of system-level parameter trading creates an immediate response in

the risk vector. Thus, rather than having a static FTA or FMECA, a dynamic version

is available.

The risk trading method allows for new design selection preferences to be created

that otherwise would not be available to design engineers. Adding new design variables

in the form of
ÐÐ⇀
Risk enables engineers to find designs with higher utility as partially

defined by risk metrics than if risk was ignored in design trade studies. This allows

risk to be brought on par with other important system-level variables rather than being

considered only after conceptual designs have been developed.

Chapter 4 presents a journal paper that as of the time of this writing is under a sec-

ond round of reviews to be published in the journal of Research in Engineering Design.
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The paper in Chapter 4 details the method that was developed in order to satisfy Ob-

jective #1. A conference version of this paper (paper number DETC2010-29016) was

presented at the American Society of Mechanical Engineers (ASME) 2010 International

Design Engineering Technical Conferences and Computers and Information in Engi-

neering Conference (IDETC and CIE) in the Systems Engineering, Information and

Knowledge Management track of the Computers and Information in Engineering (CIE)

conference [82]. It is omitted from this dissertation but is available from ASME.

3.3 Objective #2: Determine Engineering Risk Appetites

The second objective of this research develops a psychometric risk survey designed

to assess engineering risk attitude. Understanding the risk attitudes of engineers is

useful for several reasons. For instance, the need for training to bring an engineer’s

risk attitude in line with the attitude expected by a company can be assessed. Many

other opportunities are available to make use of an engineering-specific psychometric

risk survey.

3.3.1 Background

Risk is an integral part of engineering design. Risk propensity is often considered an

essential ingredient for innovative design, perhaps best exemplified in the IDEO motto

“Fail often to succeed sooner," implying a willingness to take the risk to allow a product

concept to fail to enable learning. On the other hand, risk aversion pervades certain

industries, such as power generation and aerospace. There is no one correct level of

attitude to risk across all engineering sectors; rather, risk is a factor that must be
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managed in order for an organization to reach its objectives. Research by Van Bossuyt

et al. in risk trading in engineering design has shown that what one engineer thinks is

‘risky’, another engineer may not [83].

Within engineering design, there is no shortage of methods to identify the risk of fail-

ure of components [84]. At the organizational level, standards such as ISO 31000:2009

[57] prescribe a framework for organizations to manage risk. The standard usefully

identifies four aspects to risk management: risk identification (I), risk analysis (A),

risk evaluation (E), and risk treatment (T). While the standard prescribes effective

principles and guidelines for organizations to establish risk management policies and

procedures, it, like formal engineering risk analysis methods, falls short in the assess-

ment of organizational and personal attitudes to engineering risk.

3.3.2 Method

In order to achieve Objective #2, a psychometric engineering risk test is developed which

is designed to assess engineering risk attitude, an engineer’s mental response to the

perception of uncertainty of objectives that matter [60]. The psychometric engineering

risk test is modeled after the DOSPERT test [40, 47] and is based in part upon principles

and guidelines in the ISO 31000:2009 standard on risk management [57] while also

being partially based upon findings from initial research [85]. The DOSPERT test is

quickly becoming the most preferred risk attitude scale in psychology for its predictive

abilities and ability to show whether observed risk behavior is based upon the person’s

perception of risk or the person’s attitude toward the perceived risk. ISO 31000:2009 is

the International Organization for Standards risk management principles and guidelines

standard. The DOSPERT test has demonstrated both a high level of reliability and
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construct validity. The standard systematically lays out the principles behind risk

management and outlines guidelines for risk management practitioners to follow.

Survey questions are initially developed by following the ISO 31000:2009 definitions

of the four aspects of risk management (risk identification, risk analysis, risk evaluation,

risk treatment) and associated recommended activities. The items present respondents

with typical scenarios or tasks they would encounter in dealing with each of these

aspects. Each aspect and associated questions are briefly described in Appendix 5.10.

Following an initial round of data collection and analysis, survey questions were revised.

They are presented in Appendix 5.11.

Understanding the risk attitudes of engineers is useful for several reasons. By under-

standing the risk attitudes of engineers, training can be conducted to bring an engineer’s

professional perception of risk – subjective judgment of the severity and characteristics

of a risk – and risk appetite – the amount of risk that is willingly taken on in order to

realize a gain – in line with the company’s risk perception and risk appetite. In systems

engineering, understanding individual engineers’ risk perception and appetite holds the

promise of helping engineers to collaborate more effectively and deliver a higher utility

product with a lower development cost and shorter development time [86]. Risk and re-

liability engineering stand to benefit from knowing their risk attitude. Expert judgment

is directly affected by how engineers perceive risk and their risk appetites. By under-

standing individual risk perceptions and appetites, risk experts can explicitly normalize

their expert opinions with peers [83]. In terms of theory of decision-based design, it

is already known that decision makers are subject to a set of psychological biases, one

of which is a framing effect. If outcomes are framed in terms of gains, people tend to

be risk averse; conversely, when outcomes are framed in terms of losses, people tend

to be risk seeking. Thus, how engineering data is merely presented can bias decision
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makers, irrespective of the data presented. For these reasons, an instrument to assess

engineering risk attitude with the aim that such an instrument can become a standard

for the assessment of engineering risk attitudes is needed.

Many methods exist in engineering design to account for risk such as FFIP [67],

RED [69], FFDM [68], FMEA [87], and others. However these methods do not account

for risk appetites of enterprises or individual decision-makers. Research in psychology

has produced the well-respected DOSPERT test which enables risk appetite determi-

nation in several different domains of daily life [40]. The proposed research will create

a psychometric test similar to the DOSPERT test with the goal of categorizing and

determining engineering-specific risk domains [85]. Objective #2 seeks to find a link

between the engineering risk appetite information that engineering-specific psychomet-

ric test will provide with traditional and widely used engineering risk methods.

Chapter 5 presents a journal paper that as of the time of this writing has been

submitted to the Journal of Mechanical Design. The paper in Chapter 5 details the

creation, testing, analysis, and validation of an engineering risk appetite survey. A con-

ference paper version (paper number DETC2011-47106) was presented on the subject at

the ASME 2011 IDETC and CIE in the Design Theory and Methodology Conference,

Uncertainty and Risk in Design track [85]. It is omitted from this dissertation but is

available from ASME.

3.4 Objective #3: Account for Risk Appetite in Decision Making

The third objective of this research develops a risk-informed decision support method

that helps decision-makers choose between risk mitigation choices and make decisions

between multiple design alternatives. The method is differentiated from traditional
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lottery-based utility functions in that the method is aspirational in nature while lottery-

based methods are predictive. The decision support method makes use of the engineer-

ing psychometric risk survey as outlined in the description of Objective # 2.

Using this approach, risk-based design decisions can thus be made under risk tolerant

or risk averse risk attitudes rather than the expected value approach. For example, the

risks in Equations 3.1 and 3.2 are equal in the context of risk-based design. In Equation

3.1, a 1% chance exists that a risk costing $10,000 to return the system to a nominal

operating state will occur while in Equation 3.2, there is a 0.1% chance of realizing a

risk that costs $100,000 in order to return the system to a nominal state. Equation 3.2

represents a case in which additional system complexity has been added to the base

design of Equation 3.1, which has lowered the probability of losing system functionality

but has increased the repair cost in the event of a fault. Both risks have an expected

value of -$100. Therefore, a decision-maker using risk-based design would have no

guidance if choosing between the two designs. The designs are of equal value using the

expected value approach.

R1 = 0.99(0) + 0.01(−$10,000) = −$100 (3.1)

R2 = 0.999(0) + 0.001(−$100,000) = −$100 (3.2)

3.4.1 Background

Two methods exist in the literature to account for risk appetite in decision making

including a discarded method using psychometric risk attitude test results and the
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traditional and widely used lottery methods. Pennings and Smidts [77] investigated

using psychometric risk attitude test results to create risk curves for Dutch hog farmers

to predict individual farmer behavior in hog futures markets. The results of the research

found lotteries to be the most accurate method of predicting behavior in the context of

the hog futures market. However, the hog farmers’ self-reported behavior predictions

were most closely correlated with the psychometric risk attitude test results. The

farmers also indicated that the psychometric risk attitude test was more understandable

than the lottery method.

In this dissertation, the author1 postulates that, while lottery methods of utility

risk curve generation are satisfactory for many DBD situations, they are not as useful

for early-phase conceptual design. In early phase conceptual design of new products

it is important to aspire to create new and innovative designs. While lottery methods

are useful for cases where following past performance and predicted performance is

desirable, in the case of conceptual design it is desirable to create the designs which the

psychometric risk survey test taker aspires to create. Chapter 8.1 details a survey that

at the time of writing this dissertation is under review by the Institutional Review Board

and will be administered following the completion of this dissertation. The survey will

either confirm or deny the postulation that lottery methods are less appropriate than

psychometric risk surveys for early-phase conceptual design.

Lottery-based risk curves are only valid over the range of values used in the initial

lotteries. In case of early-phase conceptual design, the range of values might not be

fully known or could change during the design process. Re-running lotteries to create
1The postulation that lottery methods of utility risk curve generation are satisfactory for many DBD

situations but not as useful for early-phase conceptual design was developed as part of the journal paper
presented in Chapter 6 which is authored by Douglas Lee Van Bossuyt, Chris Hoyle, Irem Y. Tumer,
and Andy Dong.
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expanded risk curves thus would quickly become burdensome to the practitioner. Fur-

ther, in cases where utility risk curves are developed based upon client or customer

risk appetites, conducting multiple lottery sessions is impractical. Finally, as hinted at

in Pennings and Smidts’ research [77], lotteries do not closely match what individuals

believe they will do. However, actions of individuals more closely align to the predic-

tions of lottery methods than to self-reported methods. This can be interpreted as a

disconnect between what individuals aspire to do and what they actually do. Utility

risk curves generated by alternative methods could potentially provide new insights for

practitioners that will allow decisions to be made based upon aspirations rather than

upon past performance, as is the case with lotteries.

In summary, several methods exist and are used in the risk-based design approach

to determine engineering risk, manage identified risks, and make decisions based upon

that risk. However, these methods approach risk from an expected value choice per-

spective where the decision-makers and stakeholders are expected to be risk neutral.

Utility functions which account for risk attitude have been used in the DBD framework;

however, these functions have generally been developed for consumer products, where

there is a trade-off between product features, price and demand, and not risk-based

design applications. While utility risk curves can be useful for risk-based design ap-

plications, they are not satisfactory for early-phase conceptual design problems. As

has been shown with the DOSPERT test and has been developed to meet Objective

#2, people can be risk-averse, neutral, or tolerant. Therefore, a method is needed that

can support decision-making for different risk appetites within the risk-based design

paradigm. Psychometric risk attitude test-generated utility risk curves hold promise

for use in early-phase conceptual system design. Objective #3 develops such a method.
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3.4.2 Method

One result from meeting Objective #2 is the creation of a psychometric risk survey

similar to the DOSPERT that has the goal of categorizing and determining engineering-

specific risk domains [85]. Objective #3 develops a link between the engineering risk

appetite information that Objective #2 will provide and traditional and widely used

engineering risk methods. This allows practitioners to make risk-informed decisions

in an aspirational context rather than a predictive context as traditional lotter-based

utility methods do and in a manner that allows deviation from the expected value

theorem found in standard engineering risk methods.

Traditional engineering risk methods view a risk that has an occurrence likelihood of

1% and a consequential cost of -$10,000 as equal to a risk with an occurrence likelihood

of 0.1% and consequential cost of -$100,000. The outcome is valued at -$100. Therefore,

a decision-maker using risk-based design methods would have no guidance if choosing

between the two risk alternatives. The designs are of equal value and merit in an

expected value framework and to someone with a risk neutral risk appetite. However,

a risk-averse decision-maker will choose the second risk in order to have more certainty

about the likelihood of occurrence of the risk. A risk-tolerant decision-maker will choose

the first risk as she is less concerned with certainty and due to the lower financial cost.

It becomes less clear in instances where risks are not of equivalent value for in

an expected value framework what risk a risk-tolerant or risk-averse decision-maker

prefers. A risk-tolerant decision-maker can prefer a risk that a risk-neutral decision

maker would find unpalatable. Rationalizing the choice of a risk that has a larger

negative expected value because the risk-tolerant decision-maker is more concerned
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with the lower financial consequences than the certainty of the outcome is impossible in

an expected value framework, as found in engineering risk methods in risk-based design.

In order to provide decision support assistance for decision-makers that do not hold

a risk-neutral risk appetite, an exponential utility function is proposed as appropriate

for use in conjunction with engineering psychometric risk scale test results. The results

of the survey proposed in Section 8.1 are expected to confirm this suggestion. The

utility function may be either of the monotonically increasing or decreasing exponential

type [88]. An exponential function was chosen over other potential utility functions

because it is believed that practitioners will be either constantly risk averse or constantly

risk tolerant during the early phases of conceptual system design. The choice of an

exponential curve also allows the direct use of psychometric risk survey test results in

the creation of a risk curve [76].

This objective develops a novel way to account for risk appetite in risk-based design.

A single criterion decision based design approach is adapted by way of engineering risk

appetite utility functions to bring risk data from the expected value domain into a

risk appetite domain appropriate to individual stakeholder or an enterprise’s general

risk appetite. The risk appetite utility function is developed via psychometric risk

survey test results, derived from the results of Objective #2, rather than traditional

lottery methods. By viewing risk data through a risk appetite lens, stakeholders and

decision-makers can make risk decisions with analytic backing that would traditionally

be justified with “gut feeling.” An important distinction is drawn between appropriate

uses of lottery-derived risk utility functions and psychometric test-derived risk utility

functions. Lottery methods of risk utility curve generation are suitable for later stage

conceptual system design and beyond where the predictive benefits of lottery methods

are desired while the authors advocate for using psychometric risk test-derived utility
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functions for early phase conceptual system design where the aspirational benefits of a

psychometric risk survey are desired.

Chapter 6 presents a journal paper that at the time of this writing is scheduled to

be published in the AIEDAM Fall 2012 special issue on intelligent decision support and

modeling (Volume 26, Number 4) [89]. The paper in Chapter 6 details the development

of a decision support and decision automation method that allows the psychometric

risk survey developed to meet Objective #3 to be used to create utility risk curves.

The utility risk curves are then used to make risk-informed decisions in the conceptual

complex system design process. A forthcoming conference paper (paper number DTM-

70399) on the topic will appear in the ASME 2012 IDETC and CIE in the Design

Theory and Methodology Conference in the Uncertainty and Risk in Design track. It

is omitted from this dissertation but will be available from ASME.

3.5 Validation and Application

Objective #1 was initially validated by testing the risk trading methodology in a com-

puter simulated CDC environment. A simplified spacecraft model developed fromWertz

and Larson [90] was used as the basis for a test of the methodology. Chapter 4 includes

a journal article that demonstrates the methodology using a computer simulation. The

method was further tested using undergraduate and graduate student research partic-

ipants who were formed into collaborative design teams. These teams then conducted

trade studies using standard trade study methodologies. Following that, the method-

ology developed to meet Objective #1 was introduced to the research participants.

Observations were made on the utility of the resulting spacecraft designs and on the
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desirability and ease-of-use of the method. Chapter 4 details the testing of the method-

ology on a limited population of research study participants.

Following the tests in a simulated CDC environment, an attempt has been made to

introduce the method developed to meet Objective #1 to an industrial, production-level

CDC such as JPL’s, Team-X. Ideally, the methodology will be tested on a small real-

world design trade study. To date the method has been introduced to key personnel

at JPL but the methodology has yet to be tested or adopted. When the method is

tested, feedback will be collected from the participants to further refine the method

and prepare it for full deployment in a CDC environment.

Objective #2 was validated by administering the psychometric engineering risk sur-

vey to a population of graduate and undergraduate engineering students at Oregon

State University (OSU) and University of Sydney (USyd). Initial administration was

to a small group of participants to receive feedback on the survey instrument. Further

administration of the survey instrument was conducted on a group of roughly 100 par-

ticipants to check for statistical validity of the proposed engineering risk domains. It

was found that refinement and redevelopment of the scale questions was necessary.

A second round of surveying on a larger population in the range of 200 student

participants occurred to further verify the survey instrument. A final list of questions

was selected that properly loads onto five engineering risk domains that were uncovered

as part of the research connected to Objective #2. After this dissertation has been

completed, an attempt will be made to administer the survey to a large population

of professional engineers at a corporate engineering firm such the Boeing Company or

JPL. The resulting data will be used to do a final statistical validation of the survey

instrument developed for meeting Objective #2.
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Objective #3 was initially validated through proof-of-concept demonstrations using

a simplified spacecraft or aircraft model similar to that used to validate Objective #1

[89]. Further validation and a sensitivity analysis of the method is presented in Section

7.6. User tests will be performed on a population of students and a group of professional

engineers at a firm such as the Boeing Company or JPL following the completion of

this dissertation.

Initial verification and demonstration of the integrated Risk-Informed Decision Mak-

ing Framework has occurred in a computer simulated CDC environment. The imple-

mentation of the framework into software is presented in Chapter 7 and will be part of a

forthcoming journal article. In the future, following the completion of this dissertation,

the framework will be tested in a simulated CDC environment staffed by engineering

student research participants. Following successful completion of simulated CDC tests

and further refinement of the framework and underlying methods, an attempt at testing

the framework will occur at either the Boeing Company or the Jet Propulsion Labora-

tory. Both organizations host production-level collaborative design centers where the

methods developed as part of this research are most applicable.

3.6 Impact of the Risk-Informed Decision Making Framework

By developing a framework to account for risk at the system level using risk models from

the subsystems and risk appetite information from the customer, the voice of the cus-

tomer will be more accurately reflected in conceptual designs. Risk tolerant customers

will be given conceptual designs with high utility and high risk where innovation can

occur to realize high profits. Risk averse customers will receive conceptual designs with

high utility and low risk where the risks that are present have more certainty. Govern-
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ment and industrial customers will benefit from this framework by having conceptual

designs created that more accurately reflect their risk appetites.

3.6.1 Objective #1 Impacts

The successful development of methods to meet this objective gives power to individ-

ual subsystems chairs to analyze individual subsystem risks and control subsystem risk

models. This objective provides a new means for stakeholders to account for risk in

conceptual designs and a new way for engineers to choose subsystem designs or compo-

nents based upon risk information will become available. Managers will be able to base

decisions during a trade study upon risk levels present in subsystems and the overall

system. Further, customers will have a different, more nuanced feel for the risk profile of

the design at the end of the conceptual design trade study process. Finally, conceptual

design trade study results will have more accurate and trustworthy risk information.

3.6.2 Objective #2 Impacts

A better understanding of engineers’ mental response to the perception of uncertain

objectives has resulted from the successful completion of this objective. Targeted train-

ing will be able to be conducted to harmonize an engineer’s professional perception of

risk (subjective judgment of the severity and characteristics of a risk) and risk appetite

(amount of risk that is willing to be taken in order to realize a gain) with that of the

engineer’s company or specific position. Being able to understand an individual engi-

neer’s risk perception and appetite will help engineers to collaborate more effectively

and deliver higher utility products with lower development costs and shorter develop-
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ment times. Understanding individual risk perceptions and appetites can also be used

to develop a method of normalizing expert opinions with peer groups enabling direct

comparison and trading of expert risk judgments.

3.6.3 Objective #3 Impacts

The satisfactory completion of this objective produced a link between engineering risk

appetite information and traditionally widely used engineering risk methods. The abil-

ity to account for risk appetite in risk-based design will be further advanced. Viewing

risk data through a risk appetite lens will allow stakeholders and decision makers to

make risk-based decisions with analytic backing that traditionally would be justified

by “gut feeling.” Risk-averse decision makers will have decisions with higher certainty

highlighted. People with this risk appetite prefer risks that are more certain over un-

certain risks. Risk tolerant organizations will find that identifying large risks will drive

potential innovation and profit.

3.7 Contributions

This dissertation makes several significant contributions to the literature. Objective #1

develops a novel method to trade risk as a system-level variable in trade studies where

individual subsystem chairs analyze subsystem risks and control subsystem risk models.

Objective #2 introduces a novel method of assessing engineering risk appetite using a

purpose-built psychometric risk appetite survey. Objective #3 produces a novel method

of making risk-informed decisions through the lens of risk appetite from an aspirational

perspective. The framework contributes a novel method of accounting for risk and
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risk appetite during the conceptual design trade study process where risk is traded

between subsystems as a system-level parameter and risk-based design decisions are

made by quantitatively taking risk appetite into account. Thus four important, novel

contributions are made to the literature from this dissertation.
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4.1 Abstract

Complex conceptual system design trade studies traditionally consider risk after a con-

ceptual design has been created. Further, one person is often tasked with collecting

risk information and managing it from each subsystem. This paper proposes a method

to explicitly consider and trade risk on the same level as other important system-level

variables during the creation of conceptual designs in trade studies. The proposed risk

trading method advocates putting each subsystem engineer in control of risk for each

subsystem. A risk vector is proposed that organizes many different risk metrics for

communication between subsystems. A method of coupling risk models to dynamic

subsystem models is presented. Several risk visualization techniques are discussed. A

trade study example is presented based upon a simplified spacecraft model. Results

from introducing the risk trading methodology into a simulated CDC are presented.

The risk trading method offers an approach to more thoroughly consider risk during

the creation of conceptual designs in trade studies.

Keywords: Trade Study, Complex System Design, Risk, Collaborative Design Cen-

ter, Risk Trading

4.2 Introduction

Risk has traditionally been an afterthought in the conceptual complex system design

process. Risk is typically only formally assessed after a conceptual design has been

created and does not explicitly play a role in the creation and selection of conceptual

designs. Instead, implicit assumptions are often made about the “riskiness" of con-

ceptual design models. Our hypothesis is that by moving risk into trade studies and
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giving it a place among more traditional system-level variables such as power, mass,

etc., conceptual designs will be explicitly created and selected based on risk, reliability,

robustness, and uncertainty metrics. Specifically, this research presents a method of

explicitly trading and evaluating designs based upon risk in design trade studies among

subsystems with the end goal of maximizing system utility and system integrity.

In this paper, various risk metrics are placed in a vector denoted as
ÐÐ⇀
Risk. Risk in

the engineering context is defined as the severity of a risk outcome multiplied by the

probability that the event will occur [57]. The risk vector is traded in design trade

studies. Based upon the desired level of
ÐÐ⇀
Risk for a system, specific point designs or

portions of the design space can be identified for further study and development. The

risk trading methodology presented in this paper is implemented in Phoenix Integration

Inc.’s ModelCenter [91] and demonstrated in a simulated CDC environment using un-

dergraduate and graduate participants as subsystem engineers with direct control over

subsystem decisions. In a previous conference paper [83], the authors tested an earlier

version of the method using an automated trade study.

The idea for this paper started after observing several Team X trade study sessions

at the JPL. Through conversations with personnel currently and previously involved

in Team X and similar groups, it became evident that the issue of accounting for

risk in a meaningful way in trade studies needed to be addressed beyond what can

be found in literature and practice. Development of the method presented in this

paper followed. After positive feedback from a conference paper on the method [83],

the method was then tested on a simulated CDC environment using college students as

subsystem engineers. In the future, the authors plan to test the method in an industrial

CDC environment.
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The following sections include background on trade studies; CDCs; trade study

software; risk, reliability, robustness, and uncertainty methods; related work; and other

necessary background information. The methodology to trade risk is developed and

demonstrated in a trade study using a simplified spacecraft model adopted from Wertz

and Larson [90]. Future work to expand the methodology is outlined.

The risk trading method presented in this paper allows for new design selection

preferences to be created that otherwise would not be available to design engineers.

Adding new design variables in the form of
ÐÐ⇀
Risk enables engineers to find designs with

higher utility as partially defined by risk metrics than if risk was ignored in design

trade studies. This allows risk to be brought on par with other important system-

level variables rather than being considered only after conceptual designs have been

developed.

4.2.1 Design Trade Studies Fundamentals

Design trade studies are used in conceptual complex system design to generate different

design alternatives and compare amongst them. Trade studies can be performed either

automatically using software packages or by teams of people. Whereas automated,

computer generated trade studies can create many thousands of design points quickly,

manually-conducted human generated trade studies are often seen as having higher

fidelity and are more likely to be accepted [1]. The demonstrative trade studies in this

paper are all manual trade studies conducted with the assistance of computers.

Metrics such as cost, mass, power, volume, and other parameters are often traded in

such trade studies. Each subsystem within a complex system is initially allocated spe-

cific amounts of the constraining parameters. During the course of the design process,
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several subsystems are often found to be lacking in one or multiple constraint parame-

ters but have additional quantities of other parameters available. These parameters can

be traded between different subsystems and contain intrinsic value of varying degrees

for different subsystem designers [2, 3, 4]. The resulting conceptual designs can then be

ranked according to appropriate selection rules [5, 6].

When there is a defined “measure of goodness,” the basic mathematical concept

behind trade studies is simple and straight-forward. Trade-offs are made between de-

sign variables to achieve maximum design utility [7]. This generally takes the form of

max f(Ð⇀U ) where
Ð⇀
U represents relevant system utility metrics.

This simple equation provides the foundation for a wide range of analytic methods

that all aim to find the optimal design given system constraints. Many different methods

have been developed to computationally find the optimal solution. The difficulties,

however, are in developing a series of equations that adequately model the system to

then efficiently find the optimum solutions to those equations [7].

4.2.2 Conceptual Design Centers

Many companies and institutions have teams who perform trade studies as part of the

early complex system design process. The first and most cited example is the NASA

JPL’s PDC and the associated design team, commonly referred to as Team X. The

group, formed in June 1994 [8], functions as a conceptual spacecraft mission design

team.

The Team X design team includes engineers and scientists from all major spacecraft

mission subsystems co-located in the PDC, which is outfitted with the latest technology

to aid in spacecraft mission development and concurrent design. This gives Team X
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the ability to complete spacecraft architecture, mission, and instrument design trade

studies very rapidly [9]. The design iteration portion of most Team X trade studies

are completed in two to three days, compared to three to nine months to complete

a comparable trade study [10]. Team X has also reduced the cost of concept-level

spacecraft mission design by a factor of five compared to conventional design processes

[10].

Within Team X and other CDC groups, there are often desired ranges of system

level risk. While it might appear that a design minimizing risk is always desired this is

often not the case. Sometimes designs with a specific level of risk above the absolute

potential minimum are desired. In the case of Team X, this is due to the desire to launch

missions that are both cost-effective and challenging. Missions at NASA are selected

for further development based on several factors including the mission risk profile. A

risk target range has been defined that balances pushing the boundaries of engineering

and science with a desired cost and level of mission success [19].

4.2.3 Trade Study Software

Many formal trade studies are conducted using software packages. Several different

commercial and academic packages are available. Commercially available and academic

software packages exist that support both manual and automated trade studies. They

include ICEMaker [92], Advanced Trade Space Visualization (ATSV) [93], and Model-

Center [91] among others [94].

This paper uses ModelCenter in the development of a risk trading methodology.

Details of ModelCenter’s use in CDC environments can be found in [82]. However, the
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methods developed here are applicable in any other trade study software tool, whether

for manual or automated trade studies.

4.2.4 Risk, Reliability, Robustness, and Uncertainty

Trading any variable in a trade study requires agreed-upon definitions and values of

the variables. While it is easy to define a cost variable as the dollars it will take to

build something or a mass variable as the mass of an object, defining the value of “risk”

is difficult and more abstract. This paper uses the strict engineering definition of risk

where risk is defined as the probability of an event occurring multiplied by the impact

of that event.

Risk is often defined in engineering as the probability of occurrence multiplied by

the severity of impact [57]. However many people including engineers think of risk

more by its dictionary definition: the possibility of suffering harm or loss, or a danger.

Other concepts such as reliability, robustness, and uncertainty are also often lumped

in the same category as the engineering definition of risk. Reliability can be defined in

engineering as “the ability of a system or component to perform its required functions

under stated conditions for a specified period of time [61].” Robustness in the systems

engineering context refers to a system that is resistant to failure due to inputs that are

beyond the expected and designed for input range [62]. Uncertainty is a result of a lack

of knowledge about system specifications, and errors resulting from imperfect models

[58]. Some researchers further break down uncertainty into multiple subcategories that

often contain elements of risk, reliability, and robustness [59]. This research uses the

engineering definition of risk: probability of occurrence multiplied by severity of impact.
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4.2.5 Risk Analysis Techniques

It is necessary for the methodology presented in this paper to be able to quantify risk,

as defined by the probability of occurrence of a risk multiplied by the severity of the

realization of the risk [57], in a repeatable and robust manner. Many risk evaluation

tools exist that are commonly used in industry. For instance, FMEA and its extension,

FMECA, adding criticality analysis, find use across many industrial sectors [65, 87].

FMEA provides probability and severity information for each identified and analyzed

risk.

In early conceptual design or when more rigorous risk analysis cannot be performed,

expert judgment is often used. One or a group of experts is asked to rate the level of risk

present in a component or subsystem. The resulting rating can take the form of “low,

medium, high,” a numeric scale, or many other options [95]. This is the case for both

the severity and occurrence portions of risk. Expert judgment has found widespread

use in various settings such as the aerospace industry, nuclear engineering, and other

areas for many decades [96, 97]. Several methods exist to elicit expert judgment and are

covered in detail in the literature [98, 99, 100, 95, 101, 102, 103]. Another commonly

used fault analysis tool is FTA. FTA is employed when a top-down graphical approach

to failure analysis is desired [66].

The risk methods presented in this section are only a small selection of the wide array

of robust quantified methods available including Qualitative Risk Assessment (QRA)

[104], Event Tree Analysis (ETA) [105], RBD [63], PRA [64], FFIP [67], FFDM [68],

RED [69, 106], and Risk and Uncertainty Based Integrated and Concurrent design

methodology (RUBIC) [86] among others [107, 84, 108]. This paper specifically uses
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FMEA, expert judgment, and FTA for illustration purposes; however, any risk method

can be used.

4.3 Related Work

Some CDCs such as Team X currently employ tools and methods to capture risk in

the conceptual design process. However, establishment of mission risk posture usually

happens before conceptual designs have been generated, and risk evaluation happens

afterward; or risk evaluation is part of a process that happens in lieu of trade studies;

or worse yet, risk does not play any role in early conceptual design development. But

there is generally no accepted method to measure risk within each subsystem model

as a parameter to be controlled and developed by individual subsystem chairs during

conceptual design trade studies. This section will review several relevant tools and

methods that are currently used in CDCs, have been proposed for such use, or could

be adapted to the CDC environment.

4.3.1 Risk and Defect Detection Based Methods

The RAP tool is a PRA-based assessment software package that is employed during

a trade study session [20]. Each subsystem chair has the ability to enter information

into the tool as he/she sees fit. This data contains a RPN comprised of the likelihood

of a specific risk occurring multiplied by the effects if the risk is realized. Mitigation

information can also be entered in a free-form text box. In Team X, one person, the

“risk chair,” is dedicated to monitoring the RAP tool and compiling the data entered

by the subsystem chairs to create an overall system-level risk assessment. Other groups
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outside of NASA have also used tools similar to RAP and with similar implementations

yielding similar results and problems [21, 22, 23].

In addition to RAP, JPL has also developed DDP, a tool that helps engineers deter-

mine what mitigation steps will provide the largest reduction in system-level risk [24].

Literature on DDP does state that risk should be traded and provides a framework for

trading but trade studies are not suggested to be performed in CDCs. The literature

does suggest that risk can be compared against performance metrics to find the opti-

mum level of risk versus performance; but to examine risk, conceptual designs must be

developed and solidified before the DDP method can be used to analyze risk [25]. In

the authors’ opinion, the DDP method suffers from the perception that it is an overly

complicated tool and methodology.

While RAP and similar tools have been adopted in many CDCs and DDP has found

some use outside of the CDC environment, several other methods have remained purely

academic. For instance, a risk management method developed by Dezfuli et al. embeds

the NASA CRM process that is used in practice in many NASA groups into a broader

decision framework that has not found use outside of academia [26]. The method

presents a risk management approach intended to be used throughout the product life-

cycle. Performance measures and NASA’s CRM process are relied on to assess risk.

While the method does state that risk must be accounted for in the conceptual design

phase and further briefly mentions the trade study process, the actual analysis of risk

still happens after conceptual designs have been created [27]. Thus the method does

not place risk directly in the trade study process.
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4.3.2 Uncertainty and Design Margin Based Methods

A normative method that attempts to balance cost, risk, and performance for decision

makers in preliminary spacecraft mission design is presented by Thunnissen [78]. The

method focuses on uncertainty and classifies it into four different categories (ambigu-

ity, epistemic, aleatory, and interaction), three subcategories of epistemic uncertainty

(model, phenomenological, and behavioral), three sub-sub categories of model uncer-

tainty (approximation errors, numerical errors, and programming errors), and four sub-

sub categories of behavioral uncertainty (design, requirement, volitional, and human

errors). To deal with the uncertainties, probabilistic methods and Bayesian techniques

[79] are employed. However, risk in the form of Thunnissen’s uncertainty definitions

is not considered during trade studies. Instead, it is analyzed for a specific subset of

overall mission design during the very early stages of conceptual design prior or in lieu

of trade studies.

Another method developed by Thunnissen formalizes design margins in trade studies

and also attempts to trade risk in trade studies [80]. However trading risk is presented

as an afterthought to the primary concern of design margins in the method. The risk

model presented simply replaces an expected design constraint. Rather than setting a

fixed minimum value for a design constraint, a 100% risk of failure is produced when the

minimum value is crossed. The primary contribution of the work is the formalization

of margins in trade studies – not implementing risk in trade studies.

Browning presents a method of modeling impacts of process architecture on cost

and schedule risk in product development [109, 110, 111]. The method examines how

rework cascades throughout a process, and the resulting cost and schedule trade-offs.

Risk, as partially defined by uncertainty of outcome, can be examined through a utility
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function in order to incorporate characteristics such as risk aversion into the method.

The primary focus of Browning’s method is the general process of product development

rather than the creation of conceptual designs in trade studies.

Finally, Charania et al. present a collaborative design method that utilizes Proba-

bilistic Data Assessment to trade risk in trade studies conducted using Phoenix Inte-

gration Inc.’s ModelCenter software package [81]. However risk is treated as a separate

“subsystem” in the trade studies. Risk is not explicitly incorporated into each subsys-

tem model. Rather, like the RAP methods used by Team X and others, one person or

one “subsystem” model is in charge of risk.

4.3.3 Robustness Methods

Robust design methods have been used for more than 20 years in western engineering

practices. Taguchi popularized the use of such robustness methods as factorial exper-

iments and other statistical methods that are now widely used to improve the quality

of industrial products [112, 113]. While Taguchi originally advocated for his methods

to be used during parameter design, the portion of the design process following con-

ceptual design, others have since expanded his work into the conceptual portion of the

design process [114]. In order to improve the product, the methods that comprise ro-

bust design strive to make the product insensitive to environmental inputs. Several of

the methods developed for the conceptual design process have the potential to be used

in trade studies but to the authors’ knowledge, none have been implemented.

The Robust Concept Design Methodology (RCDM) proposed by Ford and Barkan

loosely mirrors the trade study process [115]. Stages 3 and 4 of the method develop a

conceptual design, evaluate the design, and iterate as necessary. The main difference
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of this method as compared to trade studies is that robustness is treated as the only

system-level parameter of merit. In trade studies, many different system-level variables

can be considered at once.

Andersson presents a semi-analytic method based upon the error transmission for-

mula with the goal of achieving conceptual robustness [116]. The method aids engineers

in making preliminary assessments of the levels of design variables to prepare for subse-

quent phases of design. A means of analyzing predetermined dependency relationships

is also provided. In order to make these assessments, well-defined design functions are

required which can be a hindrance during early-phase conceptual design where strong

analytic functions are not always available.

Ziv Av and Reich develop the Subjective Objective System (SOS) method which

generates optimized conceptual designs for diverse disciplines [117] and a complemen-

tary procedure to develop robust conceptual designs [118]. SOS has the ability to model

design information at several different levels of resolution which resemble the House of

Quality [119]. The SOS method integrates market, technology, and organization infor-

mation in order to produce design concepts matched to the market. The robust product

concept generation method, an expansion of SOS, allows robustness to be traded with

other aspects of a conceptual design as it is being generated. The method further allows

a local sensitivity analysis of the resulting conceptual designs to determine how stable

the concept is when customer parameters vary. While the methods developed by ziv Av

and Reich can model risk as a system goal, the methods are not explicitly developed for

trade studies and do not place control subsystem risk models with subsystem engineers.

The robust decision-making concept developed in [120] presents a 12 step method

put forward as necessary to make robust decisions. Steps 5 through 7 extend Quality

Function Deployment (QFD) to accept robustness product information. Step 8 develops
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multiple design alternatives with an allusion to performing trade studies while Step 9

evaluates the design alternatives. The concept could conceivably be further extended

to include risk, reliability, and uncertainty metrics as important system parameters and

does advocate for appropriate decision-makers to be selected and queried. However,

the concept does not produce a methodology focused on trading risk as a system-

level parameter where all subsystem risk models are controlled by individual subsystem

engineers as the method presented in this paper does.

4.3.4 Summary and Contributions

In summary, some methods such as RAP and DDP have found use in some CDCs

and elsewhere while other methods such as those developed by Thunnissen, Charianian

et. al., others remain academic, and some such as SOS and RCDM have not been

developed for CDC trade studies. Some of the methods analyze risk after conceptual

designs have been created using trade studies. Others analyze risk prior to trade studies

or bypass trade studies all together. One even analyzes risk within trade studies during

the creation of conceptual designs as a separate subsystem. However, to the authors’

knowledge no method currently places risk within each subsystem model to be controlled

and developed by individual subsystem chairs during the creation of conceptual designs

in trade studies. This research fills the gap in existing methods.

This paper contributes a method that gives the power to analyze subsystem risk and

trade system-level risk to subsystems chairs during the creation of conceptual designs in

trade studies. The method provides a new means for stakeholders to account for risk in

conceptual designs, and for engineers to choose subsystem designs or components based

upon risk. Managers selecting specific risk profiles can use this method to identify the
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most interesting designs. Customers of Team X sessions can use this method to get a

different feel for the risk profile of the end design than has been previously available.

This will produce results that are more accurate and more trustworthy than currently

available methods, resulting in a method that can be adopted in practice.

4.4 Methods

In this section a methodology is presented to trade risk as a system level parameter

in trade studies during the creation of conceptual designs. Risk trading will happen

between separate subsystems and be overseen by each subsystem. Risk will be tradeable

as a system-level parameter. To facilitate risk trading, a risk vector (
ÐÐ⇀
Risk) is developed

that can be used to contain risk, reliability, robustness, and uncertainty metrics. In this

paper, only risk as defined by the probability of an event multiplied by the consequences

of its occurrence is used. However, other related concepts such as reliability, robustness,

and uncertainty can be similarly traded. Methods are presented to create a system-level

risk vector from the constituent subsystem risk vectors. Ways of using the system-

level vector in trade studies are then presented to demonstrate how to use the risk

trading methodology. The four steps involved are summarized in the following list and

mathematically demonstrated in Equation 4.1. Note that to maximize system utility,
ÐÐ⇀
Risk does not necessarily need to be minimized.

1. Create risk vector schema and choose appropriate risk metrics

2. Implement risk vector into subsystems and populate subsystems models with risk

methods

3. Combine subsystem vectors into system-level risk vector
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4. Perform trade study using risk vector as a tradeable system-level parameter

Max(Utility) = [Sys Metric 1, Sys Metric 2, ...,
ÐÐ⇀
Risk] (4.1)

4.4.1 A Risk Trading Methodology: Main Steps

The following sections detail the four steps outlined earlier in Section 4.4 that are

required to implement and make use of the risk trading methodology. Subsequent

sections make use of the risk trading methodology implementation using an illustrative

case study to show the utility of the risk trading methodology to practitioners.

4.4.1.1 Creating a Risk Vector Schema

The first step in the risk trading methodology is to create a risk vector schema. It is often

the case in industry and academia that the definitions of risk, reliability, robustness, and

uncertainty become blurred and mixed together [59]. While it is important to tightly

define these terms for the project at hand, one can think about this family of concepts

under the meta-category of risk [59]. Especially when talking with non-subject experts,

grouping all of the related ideas into a risk meta-category can be very useful.

The concept of grouping risk, robustness, reliability, and uncertainty into one meta-

category can be extended to create risk vectors. A risk vector,
ÐÐ⇀
Risk, is defined to

include all components of risk, reliability, robustness, and uncertainty in a design. As

an example, Equation 4.2 shows one potential generic
ÐÐ⇀
Risk configuration.
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ÐÐ⇀
Risk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Engineering risk metric #1

Engineering risk metric #2

Robustness metric #1

Robustness metric #2

Reliability metric #1

Reliability metric #2

Uncertainty metric #1

Uncertainty metric #2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

4.4.1.2 Implementing and Populating the Risk Vector

The second step in the risk trading methodology is to implement and populate the risk

vector,
ÐÐ⇀
Risk. The trade study facilitator and subsystems chairs must agree upon the

risk metrics to be included and the construction of the vector. Depending upon the risk

methods employed, the resulting risk metrics can either be directly placed into the risk

vector or will need to be transformed into a metric or suite of metrics that have meaning

and value in a trade study setting. For instance, FTA data should be aggregated into

several risk metrics, as discussed in Section 4.4.1.3. On the other hand, subsystem FTA

data can be directly reported to the system-level risk vector. As long as the specific

types of risks being analyzed are properly defined so that there is agreement between

subsystems and between subsystem chairs,
ÐÐ⇀
Risk can be compared between different

components, subsystems, and functions. This opens the door to trading
ÐÐ⇀
Risk in trade

studies. A robust method for properly defining risk in this context will be developed in

future work.
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Expert judgment, when conducted in a repeatable and quantifiable way, can be

directly placed into risk vectors. FTA produces a top-level probability of failure that can

be directly used in risk vectors [66]. Other methods that produce a top-level quantifiable

metric can be directly integrated into risk vectors.

FMECA and other risk methods that have multiple metrics must be dealt with

differently. The Risk Priority Numbers (RPNs) resulting from a FMECA are often

prioritized from highest to lowest RPN in order to address the highest risks first.

While using the highest RPN score from a FMECA can be effective in flagging a

risky component or function, it does not tell the whole story. One informative way

of using FMECA is by summing the RPNs and dividing by the total number of risk

elements, producing an averaged RPN number. By looking at both the maximum RPN

and the averaged RPN of a function or subsystem, a more complete picture of the

FMECA can be obtained without having to review the entire FMECA.

A risk vector containing engineering risk metrics including FMECA and FTA data

can take the form of Equation 4.3.

ÐÐ⇀
Risk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max FMECA RPN

Average FMECA RPN

FTA % Chance of Loss

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

Risk models found in the literature and in practice are typically static, and do

not automatically change based upon new inputs. In fact, standard risk methods do

not normally take new inputs. For effective risk trading, a dynamic approach to risk

methods must be taken.

Three options have been identified by the authors to implement risk methods to

derive the risk vector for trade studies. The first option is to use risk methods without
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any modification. Only one static risk model represents a subsystem, irrespective of

any change in input variables. This option is only valid if the risks being accounted for

in the risk vector do not change as the rest of the subsystem design changes. Except in

rare cases, this option will not accurately capture risk and further voids any ability to

trade risk between subsystems.

The second option is to make the inputs to risk methods dynamic. This means that

an FTA top level probability of failure, for instance, would change based on the proba-

bilities attached to the sub-elements of the fault tree. The sub-element probabilities are

no longer fixed static quantities as they would be in a stand-alone FTA. Instead, the

sub-element probabilities are directly fed from input variables that can vary between

each iteration of a trade study model based upon other subsystem models and system-

level parameters. This makes trading risk between subsystems easy as any change in

input variables as a result of system-level parameter trading creates an immediate re-

sponse in the risk vector. Thus, rather than having a static FTA or FMECA, a dynamic

version is available.

The third option requires the creation of several static risk models to represent a

subsystem. The correct static risk model is then chosen either automatically or manually

based upon subsystem input variables. This can be especially useful if the subsystem

model involves choosing between components or discrete functions.

For any of the risk model trade study options, the risk models must be integrated

into the existing subsystem models. Further, the risk models must be created, managed,

and be accessible by the individual subsystem chairs.

To create a practically useful risk trading method, each subsystem chair must be

in control not only of their normal subsystem models but also of the risk models for

their subsystems. The full set of subsystem risk models cannot be managed by one
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person. The implicit risk knowledge present in each subsystem chair would no longer

be captured in the subsystem risk models.

At the end of this step, the appropriate risk models have been created and inte-

grated into the subsystem models. The risk vectors are populated with the risk metrics

produced by the individual subsystem risk models. Next the subsystems are unified

into trade studies where risk can be traded like any other system-level parameter.

4.4.1.3 Creating a System-Level Risk Vector

The third step in the risk trading methodology creates the system-level risk vector.

Bringing subsystem risk vectors together to create an overall system-level risk vector is

necessary to be able to conduct trade studies. The system-level risk vector is analogous

to any other system-level parameter such as cost or mass. However, unlike other system-

level parameters, the subsystem risk vectors cannot always be directly summed together.

Each constituent risk metric and the risk method behind it must be examined and a

determination must be made about how to best represent that metric’s system-level

risk. Figure 4.1 graphically demonstrates how subsystem risk metrics are combined

into subsystem risk vectors which are then developed into a system-level risk vector,

and finally are used in a trade study with other system-level variables.

In the case of FTA, a system-level fault tree can be created that is inclusive of the

subsystem fault trees. A dynamic FTA risk model is then easy to create. The top level

probability of failure is then reported to the system-level risk vector.

Expert judgment must be handled on a case-by-case basis. The type of judgment

being made will affect how the expert judgment metrics from each subsystem will be

combined to create a meta expert judgment for the entire system. For instance, if
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Figure 4.1: Formation of Risk Vectors and Their Use in Trade Studies.

experts are asked to estimate the probability of failure of their individual subsystems, it

is appropriate to create a system-level FTA using the expert judgments as the subsystem

probabilities. If subsystems experts are asked to rate individual subsystem risk either

high or low it is useful to display the total number of high-rated subsystems versus

low-rated subsystems. In the example, the expert judgment of system-level schedule

uncertainty is simply the sum of each subsystem schedule uncertainty metric. Similarly,

the system-level expert judgment of cost uncertainty is a summation of the individual

subsystem cost uncertainty metrics.

Each risk method requires careful analysis to determine the best method to com-

bine subsystem-level risk metrics into system-level risk metrics. FTA, expert opinion,

and FMECA all have their own ways of combining subsystem-level risk metrics to the

system-level. Other risk methods must be adapted in a similar fashion to report useful

and meaningful information to the system-level risk vector. With the system-level risk

vector prepared, the next step is to perform the trade study.
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4.4.1.4 Trading Risk

Trading risk follows exactly the same procedures as trading any other system-level

variable. The risk vector can be treated as either a set of design variables or as response

variables. As a design variable the risk vector is able to be manipulated with the full

gamut of design of experiments methods. The authors assert that as a response variable

the risk vector acts as a bounding constraint. Further, the risk vector is able to be used

in objective functions to drive the population of the trade space. In other words, it

works exactly the same as any other system-level design variable.

In order for engineers to easily understand the risk vector, there are several ways to

visualize the data that the vector contains. These methods allow for the risk vector to

play an integral role in developing conceptual designs during manually conducted trade

studies. Risk vector visualization information can be found in [83].

The system-level risk vector and its constituent parts are traded back and forth

between subsystems for other system-level parameters. Risk can now be traded for

mass, power, cost, or any number of important system-level variables.

4.5 Implementation in a CDC Environment

To demonstrate and test the risk trading methodology described in this paper, simplified

spacecraft models and risk models detailed in the following section were implemented in

a simulated CDC environment at the Complex Engineering Systems Design Laboratory

at Oregon State University. Study participants traded risk both without and with the

risk trading methodology. The results of the manually conducted trade studies demon-



59

strate the usefulness of the risk trading to a CDC in creating and choosing conceptual

designs.

4.5.1 An Illustrative Example of Trading Risk

In order to illustrate the risk trading methodology, a simplified spacecraft model based

upon [90] and a manually conducted trade study are introduced in this section. The

model was initially created without any risk methods or data. Four representative

subsystems were chosen to represent the spacecraft including Communication, Data

Handling, Attitude Control, and Power. Each subsystem model was programmed to

have two user inputs and three function or component-driven outputs. The inputs were

specific to each subsystem. They consisted of either a drop-down menu where several

component options could be chosen or an input box where bounded numeric values

could be input to drive function-based models.

Three outputs were chosen to represent spacecraft output data from the subsystems

to replicate real-world CDC trade studies: Subsystem Power Requirements, Subsystem

Mass, and Subsystem Cost. All values and variables including user-selectable inputs,

internal variables, and outputs had their units intentionally removed. Additionally, all

formulas and other numeric information were altered to only generally correspond to

real-world spacecraft systems. This is exemplified by the subsystem cost parameter that

generally ranged between a unitless value of 1 and 30. The models and results presented

in this section are for demonstrative purposes only and should not be misconstrued as

viable spacecraft models or conceptual designs.
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4.5.2 Subsystem Development

To represent the spacecraft, four representative subsystems including Communication,

Data Handling, Attitude Control, and Power were chosen. The Communication Sub-

system is a function-based model that accepts user input for the Antenna Size and

Frequency Downlink variables. Function-based subsystem models are function-driven

over a range of numeric inputs while component-based subsystems have a predefined,

limited selection of potential subsystem components. Antenna size can range from 1

to 4 and Frequency Downlink can range from 1 to 18, including decimal values. Both

of the user input fields have corresponding instructions for the user to maintain input

values between the allowable ranges. The Communication Subsystem Power require-

ments, Mass, and Cost output variables were computed using the formulas shown in

Equations 4.4, 4.5, and 4.6, respectively.

Power = −Antenna Size + 0.6 × Frequency Downlink + 3 (4.4)

Mass = Antenna Size × 2.5 + 2 (4.5)

Cost = Antenna Size × 0.75 + Frequency Downlink × 0.1 (4.6)

The Data Handling Subsystem is a component-based model that contains two user

inputs in the form of drop-down selection boxes. The first user input, System Com-

plexity, has the options of “simple,” “typical,” and “complex.” The other user input is

Spacecraft Bus Configuration which allows the user to select either “one unit,” “two

unit,” or “integrated” which refer to the spacecraft having one or two primary com-
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Table 4.1: Data Handling Subsystem Input and Output Variables
Input Variables Output Variables

System Complex. Bus Config. Power Mass Cost
Simple One Unit 7.5 4.8 0.9
Typical One Unit 11.25 6.6 1.35
Complex One Unit 15 12 1.8
Simple Two Unit 11.25 3.6 1.575
Typical Two Unit 16.875 4.95 2.3625
Complex Two Unit 22.5 9 3.15
Simple Integrated 6 2.8 1.35
Typical Integrated 9 3.85 2.025
Complex Integrated 12 7 2.7

Table 4.2: Attitude Control Subsystem Input and Output Variables
Input Variables Output Variables

Spin method Pointing Method Power Mass Cost
Gravity Grad. Nadir Pointing 4.5 1.05 0.99
Gravity Grad. Scanning 6 2.55 1.485
Gravity Grad. Off-Nadir Point. 3 1.05 1.188

Spin Nadir Pointing 9 4.2 3.3
Spin Scanning 12 10.2 4.95
Spin Off-Nadir Point. 6 4.2 3.96
3-Axis Nadir Pointing 13.5 2.8 2.53
3-Axis Scanning 18 6.8 3.795
3-Axis Off-Nadir Point. 9 2.8 3.036

puting units and distributed subsystem computers, or an integrated unit that handles

all command and data handling functionality. The resulting Data Handling subsystem

outputs are shown in Table 4.1.

The Attitude Control Subsystem is a component-based model that gives the user con-

trol over two inputs via drop-down selection boxes. The inputs are “Stability Method”

and “Pointing Method.” Table 4.2 displays the full range of user-selectable components

and the corresponding output variable values.
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Table 4.3: Power Subsystem Input and Output Variables
Input Variables Output Variables

Power Source Battery Power Mass Cost
Photovoltaic Primary Only 41.25 3.8 1.9
Photovoltaic Prim. and Second. 70.125 7.6 3.8

Static Prim. Only 27.5 6.65 20
Static Prim. and Second. 46.75 13.3 40

Dynamic Prim. Only 82.5 13.3 1.4
Dynamic Prim. and Second. 140.25 26.6 2.8

Table 4.4: Payload Subsystem Input and Output Variables
Navigation Weather

Power 50 30
Mass 2 3
Cost 6 7

The Power Subsystem is driven by a component-based model that has two inputs,

namely, “Power Source” and “Energy Source,” which are controllable via drop-down se-

lection boxes. Table 4.3 presents the range of possible user-selectable input variable

combinations and their corresponding output variables. Unlike the other three subsys-

tems, the Power output variable for the Power Subsystem indicates how much power

is available to the entire spacecraft system from the power produced within the Power

Subsystem.

In addition to the four participant-controlled subsystems, a Payload Subsystem was

also developed from Wertz and Larson [90]. It is used only to set the mission objectives

and requirements. The two possible payloads consist of a weather and navigation pack-

age. Only one payload package is selectable at any given time. The Payload Subsystem

outputs power, mass, and cost variables. It also produces data on system constraints

due to the payload. Table 4.4 presents the two payload choices and corresponding

output data.
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4.5.3 Subsystem Risk Models

For the illustrative example used in this paper, a dynamic FMEA was developed for

each of the four user-operable subsystems. Each subsystem FMEA contained ten iden-

tified failure modes. The three component-based subsystem FMEAs were stepwise risk

models. Individual failure modes were activated or deactivated based on what inputs

had been selected. The function-based subsystem FMEA was a dynamic risk model.

Failure mode RPN values dynamically varied based upon the user inputs. The subsys-

tem FMEA Maximum RPN and Average RPN values changed as a result of changing

the user input variables. The Power Subsystem FMEA, shown in Figure 4.2, is repre-

sentative of the four user-operable subsystems.

A dynamic FTA was created at the system level that represents the four user-

operable subsystems and representative sub-subsystems or components, as shown in

Figure 4.3. The FTA uses OR gates at all levels of the tree. Sub-subsystem percentages

are derived from subsystem input parameters. The percentages represent the chance of

total system failure during the course of the system life.

4.5.4 Study Population

Two distinct populations participated in the research study: one group of graduate

mechanical engineering students, and two groups of undergraduate junior and senior

level mechanical engineering students at Oregon State University participated. Each

graduate and undergraduate group consisting of four people. The graduate mechanical

engineering student group consisted of four people specializing in areas related to com-

plex design, conceptual design, and collaborative design including trade studies. All



64

F
ig
ur
e
4.
2:

P
ow

er
Su

bs
ys
te
m

F
M
E
A



65

F
ig
ur
e
4.
3:

Sy
st
em

-L
ev
el

F
T
A



66

had experience with CDC environments, and were familiar with the general concepts

of trade studies. All four participants have taken graduate level coursework at Ore-

gon State University in state-of-the-art risk and model-based design methods. Two of

the participants had previously interned with NASA, and hence also possessed general

knowledge of conceptual satellite design. This group of participants can be viewed as

an experienced user group. A analogous group of people in an established CDC would

be people with some experience within the CDC.

Two groups of undergraduate mechanical engineering students participated in the

experiment. Each group of four was a mix of junior-level and senior-level students who

had satisfactorily completed junior level design courses that contained material on the

mechanical design process, and had a collaborative design project. The undergraduate

mechanical engineers did not have prior knowledge of trade studies. This group of

participants can be considered a general user group. A similar group in a CDC might

be engineers and scientists who are just being introduced to the CDC.

All study participants were recruited through classroom and professional society

email lists. Students were compensated $40 for their participation. Informed consent

was obtained from all participants. Each experimental run lasted approximately three

hours including pre-participation screening, obtaining informed consent, acquainting

participants with the software and hardware configuration, and performing the experi-

ments.

4.5.5 Mission Scenarios

Two mission scenarios were used for the three phases of the experiment including a

weather satellite and a navigation satellite. The missions were both earth-orbiting
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Table 4.5: Mission Constraints
Weather Navigation

Energy Storage: Primary and Secondary Battery N/A
Power Source: N/A Photovoltaic
Spacecraft Bus: 2 Unit N/A
Stability Method: N/A N/A

Required Processing: 105 140
Maximum Mass: 27 45
Maximum Cost: 15 15

satellites that consisted of a series of design constraints and requirements. All con-

straints, requirements, and mission data were based upon information from [90] but

were intentionally modified so that information used in this experiment did not closely

resemble real-world or proposed conceptual satellite design information.

Both missions contained payload power, mass, and cost output variable data. Con-

straints placed upon subsystem design decisions were also provided. Table 4.5 details

the payload requirements and design constraints of each mission.

In addition to payload output variables and subsystem design constraints, each

mission also demanded that cost and mass be minimized while also assuring that a

positive power balance was achieved. Additional general information about the function

of a particular payload was provided to several groups who requested more details on

the purpose of the mission and its scientific goals. The problem statements given to the

participants can be seen in Appendix A.

4.5.6 Questionnaires, Work Products, Discussions

To gather information on participants’ opinions of and interactions with the risk trad-

ing method, four methods of data collection were used during the experiments. One
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method which was invisible to the participants was subsystem and system-level passively

collected data from ModelCenter. The other three methods including work products,

questionnaires, and group discussions required user input and interaction. At the end

of each trade study session, the participants were asked to fill out a “System Design

Report” document. The document asked the participants to write down all design de-

cisions they made, the rationale behind those design decisions, and any comments that

they had about the session. Participants were instructed to concentrate on their own

individual subsystems but also record pertinent information on decisions and rationale

of other subsystems with which they interacted. Following the completion of the Sys-

tem Design Report, a questionnaire was administered to the participants and a group

discussion was held. Questionnaire questions are available in Appendix B. Group dis-

cussion questions are available in Appendix C. The work product template is available

in Appendix D.

4.6 CDC Implementation Results

While the number of participants does not lend itself to statistically significant results,

several anecdotal insights can be drawn from the experiments. Both the graduate

and undergraduate research populations generally preferred conducting trade studies

using the risk trading methodology. For instance, one participant stated “I liked the

risk trading method” while another stated “the resulting design is more complete when

using the risk trading method.” In addition, many participants found the results of

trade studies that included risk as a system-level parameter made them more confident

that the end result of the trade study being of the highest possible utility. For instance,

one participant stated “I am more confident in conceptual designs created using the risk
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trading method.” Rather than implicit assumptions and no real conversation taking

place about the risk of various subsystem choices, both participant populations openly

discussed the risks in the design and negotiated to determine the optimum trade-off

point between mass, power, cost, and risk. Appendixes E and F provide additional

relevant participant questionnaire and group discussion responses respectively.

Many of the participants indicated that they would be more comfortable showing

the result of a trade study with risk as a system-level variable to their boss or a client

than showing a trade study result that had not considered risk. For instance, three

participants stated “I would be more comfortable to show my boss the conceptual design

created using the risk trading method.” One participant reported that including the

risk models gave him more confidence that the subsystem models were more complete

and that the resulting designs would be more in line with the desired risk propensity of

the organization or individual that had commissioned the study.

The results were presented in various forms. Numeric and dynamic FTA displays of

system-level risk information were found to be the most preferred representations of risk

for both groups of participants. Glyph plots and parallel axis plots were identified as

less useful. The participants believed that with more training, glyph plots and parallel

axis plots could be an interesting addition to help understand risk and other multi-

dimensional data. However, especially amongst the undergraduate participants, glyph

and parallel axis plots were found to be difficult to understand. Further information

about the various display techniques can be found in [83].

As compared to the risk-less portion of the study, the participants took 10 minutes

or about 30% longer to complete the trade study with risk trading. The graduate stu-

dent participants identified trading risk variables as a factor in the extra time required

to finish the study. However, the graduate students also pointed toward risk trading as
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the motivator and inspiration for their creative solution to the over-constrained prob-

lem. The undergraduates felt the need to understand how each piece of risk data was

derived and how it affected the overall risk profile of the system and subsystems. There

was much questioning of how risk model numbers were derived and if they were real-

istic or not. In an effort to understand the risk models more fully, the undergraduate

participants left their individual stations, a rare occurrence in previous sessions, and

investigated how all of the subsystem models worked to gain a better overall under-

standing of the way the models interacted with one another. Had the undergraduates

not required such a detailed understanding of the models, the trade study would have

concluded more quickly. However, the undergraduate participants felt that the time

spent understanding the risk models was well-spent and helped them to produce a re-

sult that was more confidence-inspiring. Likewise, in spite of the extra time required

to complete the trade study and extra mental effort needed to understand the method-

ology, the graduate student participants had a strong preference for conducting trade

studies using risk as a tradeable system-level parameter.

While the risk trading method presented in this paper was tested on teams of un-

dergraduate and graduate students in a simulated CDC environment, it has not yet

been tested in a production-level CDC. In order to test new trade study methods in

well-respected CDCs that are open to being used as test cases, the time of the CDC

must be purchased. In the case of Team X, this amounts to many tens of thousands of

dollars for a single trade study. This is an ongoing challenge for researchers developing

new methods for CDCs.

One of the goals of this method was to create conceptual designs that are of higher

utility as partially defined by risk metrics than when not using the risk trading method-

ology. This goal was met when the final spacecraft models selected by the experiment
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participants using the risk trading method as having the highest utility were different

and of higher utility than the highest utility models generated without using the risk

trading method. This mirrors the results found in [83]. When the risk trading method-

ology is used, designs with higher utility as partially defined by risk metrics can be

found. The other central goal of the method is to explicitly trade risk at the subsystem

level and give the power to analyze subsystem risk to the subsystem chairs during the

creation of conceptual designs in trade studies. The trade study experiments clearly

demonstrated that subsystem chairs do explicitly trade based upon risk metrics in order

to maximize system utility. From anecdotally observing the trade study sessions, the

authors additionally feel that in this limited test case, a balance was struck between

the risk metrics and other important system-level parameters such as cost, mass, and

power.

4.7 Discussion and Specific Contributions

This paper presents a risk trading method that allows for new design selection prefer-

ences to be created that otherwise would not be available to design engineers. Using
ÐÐ⇀
Risk as a tradeable design variable enables engineers to find designs with higher utility

as partially defined by risk metrics than if risk was ignored. This elevates risk to the

same level as other important system-level variables rather than having risk considered

as an afterthought to creating conceptual designs. It is therefore desirable to include
ÐÐ⇀
Risk in trade studies.

Risk methods such as FMECA, FTA, and expert judgment can be used with the

risk trading method. When developing FMECA, FTA, or similar numeric models for

use with the risk trading method, one can base risk calculations on variables. This is
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used on most of the risk models embedded in the simplified spacecraft example used in

this research. When accurate, dynamic risk models can be very beneficial to help shape

conversations in CDC environments during trade study sessions.

Participants in trade studies generally indicated their preference of using the risk

trading methodology over not considering risk during the trade study process. They

found that the risk trading methodology inspired greater confidence in the end product

of the trade study. Additionally several stated that they would be more comfortable

with showing superiors results produced using the risk trading methodology. Several

participants went so far as to state that the extra time and extra mental effort imposed

by the learning curve in implementing the risk trading methodology was outweighed by

the benefits of the methodology.

One major drawback to this method is the level of training and coordination required

for subsystems engineers to generate useful risk data. All of the people involved in

generating risk data to be used in a trade study must speak the same risk language. If

one person produces data under a different set of assumptions, different definitions, or

using different methods,
ÐÐ⇀
Risk becomes an invalid parameter for multi-attribute decision

making when setting design preferences and for trading parameters during the design

process. However, bringing an entire CDC team up to speed and teaching everyone how

to speak the same risk language can add great value.

One potential solution to address differences in the understanding of risk between

different people is to introduce a normalized risk vector. This could take several forms

including but not limited to the following. Normalization of the risk vector can occur by

normalizing the risk metrics that comprise the risk vector to present all components of

the risk vector on the same scale. Risk data being produced and consumed by individual

subsystems engineers can be normalized to each person’s individual risk profile. Doing
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this will allow people to produce and consume risk information naturally and without

having to conform to risk concepts that might not hold significant meaning to some

individuals.

Another potential drawback of this method is the lack of subsystems interaction

effects in risk models. No way of effectively capturing risks of emergent behaviors is

provided. This is an area that must be developed further in the future for this method

to more comprehensively capture risk in the early stages of conceptual design. One po-

tential method of addressing subsystem interaction effects is to use geometric proximity

models to model spurious energy, mass, and signal propagation between disconnected

subsystems [67].

4.8 Conclusion and Future Work

In typical complex system design trade studies, risk does not explicitly play a role in

the creation and selection of conceptual designs. It is only assessed after a conceptual

design has been created. This research presents a method of explicitly trading, and

evaluating designs based upon risk in design trade studies among subsystems with the

goal of maximizing system utility and system integrity.

The method presented in this paper details a novel way to assess risk and make

decisions based on risk in the complex conceptual design process. Risk is treated as

a vector with multiple components defined by the requirements of the system. The

risk vector is traded in design trade studies. Based upon the desired level of risk for

a system, specific point designs or portions of the design space can be identified for

further study and development. Risk has traditionally been treated as an afterthought

or completely ignored in the conceptual complex system design process. By moving
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risk into trade studies and giving it a place among other important more traditional

system-level variables such as power, mass, etc., conceptual designs will be explicitly

created and selected based on risk metrics.

Future work includes developing methods to efficiently and effectively generate sub-

system risk models. The models must be matched between subsystems in order to

ensure a fair comparison of risk vectors across subsystems. An effective method of

normalizing and harmonizing individual subsystem chair interpretations of risk is also

needed.

Trading risk in early conceptual complex system design holds great promise. This

paper aims to start a larger effort to set risk in line with system-level design parameters.

Specifically, a method to include risk in trade studies was developed and implemented

in a mock CDC using a simple example to show the utility of the method in practice.
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4.9 Appendix A: Problem Statements

The riskless trade study session used a simple navigation satellite problem. The problem

statement is as follows:
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This satellite is designed as a navigation satellite to add to the GPS network allowing

GPS units to acquire more accurate data on Earth. It carries equipment on board to

support its mission. Because of this, the following constraints are given for the mission:

POWER SUBSYSTEM Power Source: photovoltaic

COMMUNICATIONS SUBSYSTEM: Frequency downlink: 18

DATA HANDLING SUBSYSTEM: Required processing: 110

TOTAL SPACECRAFT: Maximum mass: 30 Maximum cost: 18

The trade study session conducted using the risk trading methodology used a simple

weather satellite problem. The problem statement is as follows:

This satellite is designed as a weather satellite to monitor the climate on Earth

and carries equipment on board to support its mission. Because of this the following

constraints are given for this mission:

POWER SUBSYSTEM Energy Storage: primary and secondary battery

DATA HANDLING SUBSYSTEM: Spacecraft bus: 2 units Required processing:

105

TOTAL SPACECRAFT: Maximum mass: 27 Maximum cost: 17

4.10 Appendix B: Questionnaire Questions

Following each trade study session, participants were asked to fill out a questionnaire

individually. The following questions were common to both trade studies.

• Rank the ease of use of each subsystem model on an Easy (1) to Hard (5) scale:

◦ Attitude control

◦ Data handling
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◦ Power

◦ Communications

• Indicate the ease of use of the two types of subsystem models on an Easy (1) to Hard

(5) scale:

◦ Component-based

◦ Function-based

Additional questionnaire questions were tailored to the risk-trading session includ-

ing:

• Describe any difficulties you encountered while understanding and using the subsys-

tem risk models

• How did you find the transition from conducting trade studies without risk models

to trade studies with risk models on an Easy (1) to Hard (5) scale?

• Indicate which set of models produced results in which you feel more confident on a

Confident in no-risk model results (1) to confident in models with risk results (5)

scale

• Indicate the ease of understanding risk data for each risk visualization technique on

an Easy (1) to Hard (5) scale:

◦ Fever charts

◦ Glyph plots

◦ Parallel axis

◦ Numeric data
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◦ Dynamic fault tree

• Is there anything that should have been done differently when transitioning from

trade study models not containing risk information to trade study models with

components?

• Do you have any additional comments about the study or anything else you wish to

convey to the researchers?

4.11 Appendix C: Group Discussion Questions

Group discussion followed completion of the System Design Report and the question-

naire in both trade study sessions. The following questions were repeated at the end of

both sessions:

• Were any of the subsystem models hard to understand and use? Were any particularly

easy?

• Did you prefer component-based or function-based subsystem models?

The following questions were used in the group discussion only for the second trade

study:

• Did you encounter any difficulties using subsystem models with risk data?

• Were you able to understand the graphical representations of risk? Which did you

prefer? (Glyph plot, fever chart, parallel axis plot, dynamic fault tree)
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• Is there anything that should have been done differently when transitioning from

trade study models not containing risk information to trade study models with

risk components?

• Do you have any additional comments about the study or anything else you wish to

convey to the researchers?

4.12 Appendix D: Work Product Template

At the end of both trade study sessions, participants completed brief reports about the

work that they had just completed. The following free entry form was provided to the

participants:

• Subsystem:

• Design Decisions:

• Rationale:

• Comments:

Most participants wrote a paragraph or more for each of the last three questions.

4.13 Appendix E: Questionnaire Results

Relevant questionnaire responses are aggregated in this appendix. Identifying informa-

tion has been removed and data has been anonymized.

Describe any difficulties you encountered while understanding and using subsystem

risk models
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• The risk models were extremely helpful and intuitive.

• The risk models were easy to understand but mitigating design problems was difficult.

• The only challenge was to observe how design changes propagated through the sub-

system and system models.

How did you find the transition from conducting trade studies without risk models

to trade studies with risk models

• Risk is just one more thing to analyze. Engineers should already be doing this.

• Trading risk was straight forward.

• The risk trading method provided more perspective and helps me to feel confident in

the final design.

• Risk adds another variable for consideration that can make it more difficult to find

a satisfactory solution.

• The risk method is more all-encompassing.

• Risk adds another parameter and is not hard to deal with.

Indicate which set of models produced results in which you feel more confident

• Knowing that design decisions are backed by the science of risk methods such as

FMEA makes me very confident in our design choices.

Is there anything that should have been done differently when transitioning from

trade study models not containing risk information to trade study models with risk

components?
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• No.

• The brief training was straight-forward.

• The transition was straight-forward.

• A better understanding of the trade-offs between risk metrics and other system vari-

ables would be useful.

Do you have any additional comments about the study or anything else you wish

to convey to the researchers?

• The risk trading method and dynamic FMEA model are big improvements over

existing methods. The method provides for another layer of reliability in the

design.

4.14 Appendix F: Group Discussion Results

Relevant group discussion responses are aggregated in this appendix. Identifying infor-

mation has been removed and data has been anonymized.

• Using the risk trading method was not harder than not using the method.

• I liked the risk trading method. It validates that there is more to the model.

• The resulting design is more complete when using the risk trading method. The

resulting design is safer.

• The risk trading method was as easy to use as standard trade study methods. It was

more complex but not more difficult.
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• I would be more comfortable to show my boss the conceptual design created using

the risk trading method. (three participants stated this)

• Using the risk trading method helped me to make design decisions more comfortably.

• It makes sense from an engineering perspective that there is a trade-off between

traditional variables such as power, mass, and cost, and engineering risk metrics.

• I am more confident in conceptual designs created using the risk trading method.

• I prefer using the risk trading method over not using the method.
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5.1 Abstract

Theories of rational decision making hold that decision makers should select the best

alternative from the available choices, but it is now well known that decision mak-

ers employ heuristics and are subject to a set of psychological biases. Risk aversion

or risk seeking attitude has a framing effect and can bias the decision maker towards

inaction or action. Understanding decision-makers’ attitudes to risk is thus integral

to understanding how they make decisions and psychological biases that might be at

play. This paper presents the development of the Engineering-Domain-Specific Risk-

Taking (E-DOSPERT) test to measure the risk aversion and risk seeking attitude that

engineers have in five domains of engineering risk appetite identified during the course

of this research including: Processes, Procedures, and Practices; Engineering Ethics;

Training; Product Functionality and Design; and Legal Issues. The iterative creation of

the instrument, an analysis of its reliability based on surveying engineering students in

Australia and the United States, and the validity of the five identified domains are dis-

cussed. The instrument is found to be statistically reliable to measure engineering risk

aversion and risk seeking in the Processes, Procedures, and Practices; and Engineering

Ethics domains. Factor analysis strongly points toward the other four sub-domains

being present. This paper closes with discussion of potential applications and uses for

the E-DOSPERT scale.

5.2 Introduction

Risk is an integral part of engineering design. Risk propensity is often considered an

essential ingredient for innovative design, perhaps best exemplified in the IDEO motto
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“Fail often to succeed sooner," implying a willingness to take the risk to allow a product

concept to fail to enable learning. On the other hand, risk aversion pervades certain

industries, such as power generation and aerospace. There is no one correct level of

attitude to risk across all engineering sectors; rather, risk is a factor that must be

managed in order for an organization to reach its objectives. Research by Van Bossuyt

et al. in risk trading in engineering design has shown that what one engineer thinks is

‘risky’, another engineer may not [83].

Within engineering design, there is no shortage of methods to identify the risk of fail-

ure of components [84]. At the organizational level, standards such as ISO 31000:2009

[57] prescribe a framework for organizations to manage risk. The standard usefully iden-

tifies four aspects to risk management: risk identification, risk analysis, risk evaluation,

and risk treatment. While the standard prescribes effective principles and guidelines

for organizations to establish risk management policies and procedures, it, like formal

engineering risk analysis methods, falls short in the assessment of organizational and

personal attitudes to engineering risk.

This paper presents the E-DOSPERT test, which is designed to assess engineering

risk attitude, an engineer’s mental response to the perception of uncertainty of objectives

that matter [60]. The E-DOSPERT test is modeled after the DOSPERT test [40, 47] and

was originally based upon principles and guidelines in the ISO 31000:2009 standard on

risk management [57, 85]. The DOSPERT test is quickly becoming the most preferred

risk attitude scale in psychology for its predictive abilities and ability to show whether

observed risk behavior is based upon the person’s perception of risk or the person’s

attitude toward the perceived risk. The DOSPERT test has demonstrated both a

high level of reliability and construct validity. ISO 31000:2009 is the International

Organization for Standards risk management principles and guidelines standard. The
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standard systematically lays out the principles behind risk management and outlines

guidelines for risk management practitioners to follow.

Understanding the risk attitudes of engineers is useful for several reasons. By un-

derstanding the risk attitudes of engineers, training can be conducted to harmonize

an engineer’s professional perception of risk – subjective judgment of the severity and

characteristics of a risk – and risk appetite – the amount of risk that is willingly taken

on in order to realize a gain – with the company’s risk perception and risk appetite. In

systems engineering, understanding individual engineers’ risk perception and appetite

holds the promise of helping engineers to collaborate more effectively and deliver a

higher utility product with a lower development cost and shorter development time

[86]. Risk and reliability engineers stand to benefit from knowing their risk attitude.

Expert judgment is directly affected by how engineers perceive risk and their risk ap-

petites. By understanding individual risk perceptions and appetites, risk experts can

explicitly normalize their expert opinions with peers [83]. The theory of decision-based

design has already shown that decision makers are subject to a set of psychological

biases, one of which is a framing effect [75]. If outcomes are framed in terms of gains,

people tend to be risk averse; conversely, when outcomes are framed in terms of losses,

people tend to be risk seeking. Thus, how engineering data is merely presented can

bias decision makers, irrespective of the data presented. Work has already been done

in the field of decision support using utility theory risk curves to augment engineer-

ing decision-making based upon risk information [89], and a preliminary version of the

E-DOSPERT test was published in the proceedings of the IDETC/CIE211 [85].

For these reasons, the authors developed an instrument to assess engineering risk

attitude with the aim that such an instrument can become a standard for the assess-

ment of engineering risk attitudes. The following sections present necessary background
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material on the DOSPERT test and related psychology of risk research, and on risk in

engineering. A methodology for the creation of the E-DOSPERT scale is presented.

Testing and validation results are then discussed. This paper concludes with discussion

of future work and implications of the E-DOSPERT scale.

5.3 Background

Risk can be defined in a variety of ways. Alternative definitions of risk and how those

definitions relate to methods for assessing risk attitudes are briefly examined in the

following section.

5.3.1 The Psychology of Risk Attitude

The ’classic’ definition of risk is the parameter that differentiates between the util-

ity functions of different individuals [28]. The utility function of individuals is often

expressed as an exponential, quadratic, or logaritmic curve [29, 28, 76]. The EU hy-

pothesis theorizes that the preference of an individual choosing between risky options

can be determined by a function of the return of each option, the probability of that

option coming to fruition, and the individual’s risk aversion [30]. The EU framework

and related methods including prospect theory [31] traditionally view the curves of an

individual’s utility function as denoting either risk aversion or risk seeking. The defini-

tion of risk aversion in the context of risk attitudes is framed in the context of someone

who prefers to take the expected value of a gamble over playing the gamble as being a

person who does not like to take risks [32]. As a result, risk attitude can be defined as a

person’s position on the risk aversion-risk seeking axis and is thought of as a personal-
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ity trait. Hillson and Murray-Webster [60] further refine this risk aversion-risk seeking

scale by inserting a mid-point “risk tolerant” as being comfortable with uncertainty and

able to handle the uncertainty if necessary and by including “risk neutral” as taking

necessary short-term actions to deliver certain long-term outcomes.

However, two issues have arisen that challenge the idea of risk attitudes in the

context of EU being a personality trait: cross-method utility instability and inconsistent

risk profiles across risk domains. When different methods are employed to measure

people’s utility, different classifications of risk-taking or risk aversion often result [33].

Further, individual respondents are not consistently risk averse or risk seeking across

different risk domains [34]. For example, managers have been found to have different

risk attitudes when evaluating financial and recreational risks, and when using company

money versus personal money [49].

The concept of relative risk attitude was introduced in an attempt to identify the

component of risk-taking that has cross-situational stability for individuals [121]. The

hypothesis was that the domain differences in apparent risk attitudes might be as a

result of domain-specific outcome marginal values. With the marginal values factored

out, stability across domains was expected. However, this was not the case under further

review. No evidence was found of cross-situational relative risk attitude stability in

empirical studies [38].

The validity of EU-based risk attitude assessment is limited due to these issues.

There has been little success in predicting individuals’ choices and behaviors in domains

not assessed by EU-based instruments [35]. Even with the limitations of EU-based

survey instruments, many are still in use. For instance, the Choice Dilemma scale

combines four different domains into one risk attitude score [36]. In spite of its flaws,

the scale is widely used.
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A more recent method of determining risk attitude takes inspiration from the world

of finance [37]. The risk-return framework of risky choice assumes people’s preferences

for risky options reflects a trade-off between riskiness of a choice and the EV. The

financial world equates riskiness of an option with its variance. In psychology risk-

return models, perceived riskiness is treated as a variable that can be different between

individuals due to differences in individuals’ content and context interpretations [38, 39].

The risk-return framework allows for people to have similar perceptions of risk

and return between different domains but in one domain prefer risk while in another

prefer caution [40]. Having such preferences and perceptions would result in different

outcomes, as the risk-return framework predicts. The term perceived risk attitude,

previously conceptualized as risk-repugnance [41], was coined to reflect the assumption

that risk in its pure form is negative and undesirable but that perceived risk might be

attractive to some individuals in certain domains and circumstances [42]. Variances in

perceived risk attitude are thus a result of discrepancies between the perception of the

risks and benefits as determined by a decision-maker and an outside observer. This is

exemplified in research conducted in the management field where what differentiates

between entrepreneurs and managers is a highly optimistic perception of risk on the

part of the entrepreneurs rather than a greater preference for risk, as one might expect

[43].

Many studies have highlighted differences in the perception of the riskiness of de-

cisions in individuals, between groups, and between cultures [44, 45]. Differences in

risk perception have also been found due to outcome framing [46]. In the context of

risk-return based models, perceived risk attitude has been found to have cross-situation

and cross-group consistency when differences in the perception of riskiness are factored
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out [39, 40]. Rather than differences in risk attitude, risk-return models suggest that

the way people perceive risk affects the choice outcomes.

In summary, risk attitudes vary by domain, so the attitude to taking risks at work

may differ from the attitude to taking risks at home. One may enjoy taking risks

in leisure activities, but be risk averse in handling of financial affairs. To assess risk

perceptions and attitude toward perceived risk in different domains of risk, Weber et

al. developed the DOSPERT test and related scale [40, 47]. Six independent domains

were identified including ethical, investment, gambling, health/safety, recreational, and

social domains. Four of the domains were originally identified based upon the risk-

taking behavior literature [48] while the fifth and sixth domains were found through

analysis of survey results where the financial meta-domain was split into investment and

gambling domains [40], which were suggested in previous research [49, 50]. Risk-taking

was found to be highly domain-specific between the identified domains where individual

respondents were risk averse in some domains and risk-neutral or risk seeking in others.

Respondents were found to not be consistently risk averse or risk seeking across the six

domains.

It was also found that preference for risk seeking or risk aversion was influenced by

the perceived benefits and risks of the activity in question. This resulted in identify-

ing two psychological variables including risk perception and attitude toward perceived

risk, as had been found in previous risk-return based models [43]. Previous risk attitude

indexes have been confounded by not distinguishing between the two psychological vari-

ables of risk perception and attitude toward perceived risk [51]. Distinguishing between

the risk perception and risk attitude variables is largely irrelevant if only prediction

of future actions is desired. However, the distinction between these variables becomes
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important when risk-taking is assessed with the goal of changing risk-taking behavior

[40].

Since the DOSPERT scale was developed and validated, many other studies have

replicated the results. Strong correlation was found with the various subscales of Bun-

der’s scale for intolerance [52] and with Zuckerman’s sensation-seeking scale [53]. Paul-

hus’ social desirability scale [54] was found to have significant correlation between

the impression management subscale and the ethics and health/safety subscales of

DOSPERT. Thus, the DOSPERT scale was found to have favorable correlations with

established scales. The DOSPERT scale has also been translated into several different

languages and contexts including the DOSPERT-G scale, a German-language version

[55], a French-language DOSPERT scale [56], and others [47]. Other scales developed

since DOSPERT was introduced have not found widespread adoption. The DOSPERT

scale is quickly becoming the most preferred risk attitude scale in psychology for its

predictive abilities and its ability to show whether observed risk behavior is based upon

the person’s perception of risk or the person’s attitude toward the perceived risk, which

allows for intervention and behavior modification.

5.3.2 An Engineering Definition of Risk Attitude

The definition and application of risk in engineering is more straight-forward than in

psychology. The ISO 31000:2009 document [57] defines risk as the effect of uncertainty

on objectives. An effect is a positive or negative deviation from the expected. Objectives

are defined as having different aspects such as environmental, health and safety, and

financial goals, and can be applied at different levels of a project or organization. The

ISO 31000:2009 definition of risk is further defined as the probability of occurrence of an
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event multiplied by the severity of the consequences. It should be noted that uncertainty

is often defined as a lack of knowledge about system specifications, and errors resulting

from imperfect models [58]. Some researchers further break down uncertainty into

multiple subcategories that often contain elements of risk, reliability, and robustness

[59]. For the purposes of this research, the ISO 31000:2009 definition of risk shall be

used in the context of engineering.

If this is used as the operating definition of risk, then risk attitude in engineering

is the ’state of mind’ of the engineer in response to the perception of uncertainty on

objectives [60]. The engineer’s attitude will influence actions, or inactions, taken. The

behavior an engineer takes toward risk can be to retain, pursue, take, or turn away from

that risk. In other words, when presented with a situation, it is important to determine

how the engineer’s risk attitude will influence behavior.

To assess this behavior, the ISO 31000:2009 document for the standard of risk man-

agement was applied as the initial basis for assessing behavior toward risk management,

that is, the engineer’s attitude to perceived risk and, simply, ‘what they would do’. The

ISO 31000:2009 document [57] prescribes four key factors in risk management: risk

identification, risk analysis, risk evaluation, and risk treatment. Risk Identification is

defined as the process of finding, recognizing, and describing risks. Risk Analysis is

the process of comprehending the nature of a risk and determining the associated level

of risk. Risk Evaluation is the process of comparing the results of risk analysis with

the significance of the risk as compared to a reference risk scale. Risk Treatment is

the process of dealing with a risk [57]. Each of these aspects of risk management may

also be considered theoretical risk domains because they cover the range of conditions

associated with increased probability of outcomes that compromise the certainty of ob-
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jectives. Each domain has a direct effect on risk behavior and is a separate source for

risk.

5.4 Hypotheses and Scale Development

Five objectives of the research are presented in this section. Six supporting hypothe-

ses are developed from the five objectives and methods of testing the hypotheses are

outlined. Confirmation of the hypotheses using E-DOSPERT test results is briefly

discussed.

5.4.1 Objective 1

The first objective of this research was to determine if engineering risk appetite can be

assessed on a risk tolerant/risk averse scale. Research in the psychology domain shows

that the general public holds six risk sub-domains that can be placed on risk toler-

ant/risk averse scales [48, 40, 47]. While the standard practice of reliability engineering

is to use the expected value theorem which dictates a risk-neutral approach, based upon

utility theory and lottery method research [31, 76, 75, 73, 88, 89] it was hypothesized

that engineers will have risk appetites specific to the engineering risk domain that are

not risk neutral.

Hypothesis 1 Engineers have risk appetites specific to the engineering risk domain

and do not follow the expected value theorem.

In order to test this hypothesis and others detailed below, the E-DOSPERT, a

psychological survey, was developed, as outlined in Section 5.5, based upon the ISO
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31000:2009 document’s four key factors in risk management. The result of the analysis,

presented in Section 5.5.3, demonstrate that engineers do have engineering-specific risk

appetites that do not follow the expected value theorem.

5.4.2 Objective 2

The second objective of this research was to determine if the four key factors in risk

management described by ISO 31000:2009 are the four sub-domains of engineering risk

appetite. It was hypothesized that engineering risk appetite will have four sub-domains

of risk including risk identification, risk analysis, risk evaluation, and risk treatment

as defined in ISO 31000:2009 and further that engineers will have a different attitude

toward risk depending upon the particular aspect of the engineering risk sub-domain.

That is, each of these aspects is a separate content domain in the language of the

psychology of risk.

Hypothesis 2 Engineering risk appetite contains four sub-domains of risk including

risk identification, risk analysis, risk evaluation, and risk treatment as defined by ISO

31000:2009.

Hypothesis 3 Engineers have different attitudes toward different risk sub-domains.

The initial version of the E-DOSPERT used to test Hypothesis 1 was designed to

also provide data to test Hypotheses 2 and 3. The result of the analysis, presented

in Section 5.5.4 and in a prior conference paper [85], show that risk identification and

risk treatment are present as sub-domains. However, further factor analysis presented

a different interpretation of the data which shows the potential for a related four factor

scale including engineering practice and processes, product functionality, legal matters,
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and engineering ethics. These potential sub-domains and two others were then explored

in a second survey that is detailed in Section 5.6.

5.4.3 Objective 3

The third objective of this research was to determine if there are any major differences

in engineering risk appetites between engineering students in Australia and the United

States of America. It was hypothesized that there would be no major difference in

engineering risk appetite between Australian and American engineering students.

Hypothesis 4 There are no major differences in engineering risk appetite between Aus-

tralian and American engineering students.

Hypothesis 4 was tested by analyzing the results of the E-DOSPERT survey de-

veloped for the first two hypotheses. The survey data was collected from mechanical,

industrial, and manufacturing engineering students at Oregon State University and

students enrolled in a mechatronics program at the University of Sydney. The anal-

ysis shows that there are no significant differences between American and Australian

engineering students.

5.4.4 Objective 4

The fourth objective of this research was to determine if engineering risk appetite can

be measured on a unidimensional scale. The scale was expected to run from risk averse

to risk seeking as is the case in the DOSPERT scale [40, 47]. It was hypothesized that

respondents would answer inversely worded paired questions consistently.
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Hypothesis 5 Engineering risk appetite can be measured on a unidimensional scale

(risk averse to risk seeking).

In order to test Hypothesis 5, the initial version of the E-DOSPERT was designed

to contain paired inversely worded questions. A total of 25 questions were intentionally

inversely phrased. Based upon sufficiently high Cronbach’s Alpha scores, the authors

found that engineering risk appetite sub-domains are unidimensional. This mirrored

the findings of the DOSPERT test [40, 47].

5.4.5 Objective 5

The fifth objective of this research was to determine if the potential engineering risk

appetite sub-domains identified as part of the analysis of the second objective results

are the true sub-domains present. It was hypothesized that the four potential domains

identified as part of the second objective including practice and processes, product

functionality; legal matters; and engineering ethics as well as two additional potential

sub-domains including product testing, and training are present.

Hypothesis 6 Six engineering risk appetite sub-domains exist including: practice and

processes, product functionality; legal matters; engineering ethics; product testing; and

training.

Questions from the initial version of the E-DOSPERT that loaded heavily onto the

four predicted domains were used in the second iteration of the test while additional

questions were generated to test all six predicted sub-domains. The survey data anal-

ysis indicates that there are only five sub-domains present including the majority that

were predicted. However, other domains appear to be present that were not initially
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anticipated. The five sub-domains identified through analysis include: Processes, Proce-

dures, and Practices; Engineering Ethics; Training; Product Functionality and Design;

and Legal Issues.

In the remainder of the paper, the iterative development of the E-DOSPERT test,

statistical analysis of initial and revised survey data to test the reliability of the instru-

ment and the validity of above hypotheses will be presented. The paper closes with a

discussion of the significance of the research findings, implications for practitioners, and

current and future research on this topic.

5.5 Initial E-DOSPERT Scale Development

In order to predict the behavior of engineers in their professional capacity and in or-

der to change the risk-taking behavior of engineers within the field of engineering, a

purpose-built scale must be constructed. This section documents the construction of

a new risk scale specific to professional engineering, the E-DOSPERT scale, includ-

ing respondent consistency tests using replicated and paired questions and reliability

based on values of Cronbach’s alpha. Cronbach’s alpha is a measure of internal consis-

tency of a set of related questions [122]. The authors conducted an exploratory factor

analysis to determine whether the four domains identified from the ISO31000:2009 doc-

ument underlie the risk behavior judgments (Hypothesis 2), to determine if engineers

have engineering-specific risk appetites that vary from the expected value theorem (Hy-

pothesis 1) and between sub-domains (Hypothesis 3), and to determine if engineering

students in Australia and America have similar engineering risk appetites (Hypothesis

4). Further analysis was conducted to determine if engineering risk appetite sub-scales

are unidimensional (Hypothesis 5).
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5.5.1 Initial Scale Development Method

Risk judgment questions were developed for each of the domains including risk iden-

tification, risk analysis, risk evaluation, and risk treatment, based upon common pro-

fessional mechanical and manufacturing engineering-related situations involving risk.

Usefully, the ISO 31000:2009 document provides descriptions of the types of activi-

ties that should be undertaken in an effective framework for risk management. Rec-

ommended activities associated with risk management become the basis for creating

scenarios (items) in the E-DOSPERT test to assess how engineers would respond to

them. Their risk judgments toward risk management activities are influenced by their

risk attitude. For example, the engineer may have a process to identify risks by having

a process in place to record all failure data for a component in a system. In order

to estimate the likelihood of occurrence of an event, an engineer might trust informed

estimation. In evaluating the risk based on this estimation, the engineer might place

more weight on a regularly occurring fault than one that may never occur. To treat the

risk, the engineer may operate the associated machinery far below the limits of safety.

The authors developed survey questions (items) by following the ISO 31000:2009

definitions of the four aspects of risk management and associated recommended activi-

ties. The items present respondents with typical scenarios or tasks they would encounter

in dealing with each of these aspects. Each aspect and associated questions are briefly

described.

The risk identification portion of the standard recommends comprehensive identifi-

cation of risks. The identification of risks entails generating the set of events that may

detract from the achievement of desired objectives. The authors considered ways in
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which risk events could be generated and how new risks may be introduced but not

identified. Sample questions for risk identification include:

• “not having complete data on the probability of failure for each component in a system”

• “introducing a design change (i.e., a new type of screw) without full documentation

because you think it’s a minor change”

Risk analysis comprises the set of activities associated with understanding the risk

factors, the magnitude of consequences, and the likelihood of consequences. The authors

considered different ways in which this information could be generated, how divergent

stakeholder opinions should be canvassed, and the types of instruments and technologies

associated with engineering analysis and how they can introduce risk into risk analysis.

Sample questions include:

• “not trusting informed estimations of probabilities in a structured decision making

process”

• “accepting the results of computational simulation and analysis without experimental

corroboration of results”

Risk evaluation examines the data from risk analysis by comparing the level of risk

found during risk analysis to the acceptable level of risk. Acceptable levels of risk may

come from company policy or industry standards. The authors generated sociotechnical

methods for risk evaluation, considered ways in which evaluations can be biased, and

simple, hypothetical situations of risk evaluation. Sample questions include:

• “placing more weight on a major fault that occurs on a regular basis than one that

may never occur”
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• “using a technology with a lower failure rate than another one but at the expense of

functionality”

Finally, risk treatment deals with actions taken to mitigate, eliminate or modify the

source of risk or its consequences. Sample questions include:

• “staying quiet about your company’s cover up of a significant design flaw”

• “operating machinery well below capacity and far within the limits of safety”

In the initial E-DOSPERT test, the original Likert scale [123] used in the original

DOSPERT test [40] was employed to measure the likelihood of engaging in a risky

(or non-risky) behavior. The scale ranges from 1 to 5 with 1 corresponding to “very

unlikely”, 2 corresponding to “unlikely”, 3 corresponding to “not sure”, 4 corresponding

to “likely”, and 5 corresponding to “very likely” to engage in an activity related to risk

identification, analysis, evaluation and treatment. The questions were not grouped

by domain. The authors kept the mid-point as “not sure” to maintain consistency

with the original DOSPERT test. Some have argued that the middle-point should be

“neutral” and an “undecided” or “not sure” option should also be available to respondents

[124]. Offering both mid-point and not sure response options, termed Non-Substantive

Responses (NSRs) [125], has been found to change the results of opinion surveys [126,

127]. In spite of the evidence that NSRs should be used in surveys, the middle point on

the E-DOSPERT scale was chosen to be “not sure”. This avoided confusion between the

DOSPERT test and E-DOSPERT test in the event that both tests are administered in

succession to respondents. Not using both NSRs allows for direct comparison between

DOSPERT and E-DOSPERT results. Finally, the concept of “neutral” as in a risk

neutral risk attitude is about taking short-term action to secure a certain long-term
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outcome [60], and this is not the same as being risk neutral in the EU framework.

Thus, using the term “neutral” would not be appropriate. The term “not sure” more

closely matches the situation of risk tolerant, which is considered the mid-point between

risk seeking and risk averse in the Hillson and Murry-Webster framework [60].

The initial E-DOSPERT questions were phrased to measure risk averse and risk

seeking attitudes along the Likert scale described above. 25 questions were intention-

ally phrased inversely. For example, the authors asked respondents’ attitudes towards

technology use. The risk averse version asked respondents to rate their likelihood of

“using a technology with a lower failure rate than another one but at the expense of

functionality.” The risk seeking version asked respondents about their likelihood of “us-

ing a technology that has a higher failure rate than a current one but that has a better

functionality.” Thus, the sub-set of inversely worded questions provides a consistency

check. If the respondents are consistent and the scales are unidimensional (risk averse

or risk seeking), then the coefficient alpha will be sufficiently high. Further, if the

scales are unidimensional, Hypothesis 5 will be validated. A complete list of questions

is presented in Appendix A.

The questions in the E-DOSPERT survey were developed with the aim of being

applicable to engineers regardless of national origin - that is, the questions relate to

matters of engineering which would occur anywhere. Like the DOSPERT scale, the

authors aimed to create an instrument with eight-item sub-scales. However, for this

initial study, the authors constructed a larger set of sub-items (test questions), 25 risk

averse, 29 risk seeking, and 54 questions in all. The number of items can be reduced in

later versions, using questions with high inter-item correlations within a domain, once

there is a better understanding of engineering risk attitude, the domains of engineering

risk, and how to measure engineering risk attitude. This larger set also allows the
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authors to perform an exploratory factor analysis to determine if factors other than the

four from the ISO 31000:2009 standard underlie risk behavior judgments.

5.5.2 Initial Scale Implementation and Testing

The initial E-DOSPERT scale was administered to undergraduate and graduate stu-

dents at the USyd and OSU. The survey contained two parts consisting of the DOSPERT

test and the initial E-DOSPERT test. The survey was administered using SurveyMon-

key. Prior to full testing, the survey was administered to several small groups of graduate

students, undergraduate students, and researchers in order to validate the questions.

At USyd, the participant population was comprised of undergraduate and graduate

students in the mechatronics program. A total of 23 students participated in the survey.

They ranged in age from 18 to 34, averaging 20 years of age. Three women and 20 men

responded to the survey. The participant population at OSU consisted of both graduate

and undergraduate students in the school of Mechanical, Industrial, and Manufacturing

Engineering. A total of 87 students responded. They ranged in age from 20 to 35 with

an average of 23. Eight women and 79 men responded. The total sample population

was comprised of 110 respondents completing the survey. The administration of the

survey and its content was approved by the relevant review boards at USyd and OSU.

5.5.3 Descriptive Statistics

Table 5.1 shows the sub-scale means (M) and standard deviations (SD) for the 110

respondents for the risk averse and risk seeking dimensions. For risk averse, the mean

level of risk is M = 3.16 (SD = 0.48) and for risk seeking, the mean level of risk is M =
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2.84 (SD = 0.52). Based on a one-tailed ANOVA, the means are significantly different

(p<0.001), meaning that the risk attitudes are domain-specific. The sub-scale means

and standard deviations, and one-tailed ANOVA tests clearly indicate that engineering

risk appetite does exist and further that engineering risk appetites do not follow the

expected value theorem. This data strongly supports Hypothesis 1.

Table 5.1: Risk Averse and Seeking Means and Standard Deviations
Subscale Risk Averse Mean (SD) Risk Seeking Mean (SD)
Identification 3.42 (0.32) 2.61 (0.12)
Analysis 2.96 (0.39) 2.78 (0.63)
Evaluation 2.25 (0.38) 3.30 (0.51)
Treatment 3.47 (0.31) 2.80 (0.49)

Since the scale ranges from “very unlikely” to “very likely”, the higher the mean for

risk averse, the more risk averse the respondents are, and, conversely, the lower the

mean for risk seeking, the less risk seeking the respondents are. The data shows that

the population of respondents are quite unsure about their risk attitude, that is, they

are in the category of “risk tolerant” according to Hillson and Murray-Webster’s scale

[60]. They either believe that they can handle uncertainty when they encounter it, or,

given the undergraduate student status of respondents, may not have yet developed the

capacity to assess their engineering risk attitude. The authors postulate that this is

an indication that more attention should be paid to educating engineering students on

appropriate risk methods and practices.

Risk attitudes were compared between the OSU and USyd students. In general, no

statistically significant difference was found (two-tailed, independent samples t-test).

Table 5.2 summarizes the mean and standard deviation of the OSU and USyd response

groups for the E-DOSPERT scale under risk seeking and risk aversion for all domains

and sub-scales. The results show that risk attitudes are largely the same across the USyd
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and OSU respondents, except for on the risk averse-risk treatment subscale, which in

turn affected the statistical difference between the USyd and OSU on the risk averse

scale because of the higher proportion of items on the risk treatment subscale. This

imbalance in items is a flaw in the scale, which was addressed in the next iteration of

the E-DOSPERT test. The data supports Hypothesis 4.

Table 5.2: Comparison of the USyd and OSU respondent populations
Subscale Uni Mean (SD)

Risk Seeking Identification Domain OSU 2.62 (0.984)
USyd 2.58 (0.930)

Risk Seeking Evaluation Domain OSU 3.30 (1.056)
USyd 3.29 (0.977)

Risk Seeking Analysis Domain OSU 2.77 (1.054)
USyd 2.85 (1.096)

Risk Seeking Treatment Domain OSU 2.81 (1.075)
USyd 2.79 (1.042)

Risk Seeking All Domains OSU 2.84 (1.069)
USyd 2.85 (1.048)

Risk Averse Identification Domain OSU 3.40 (1.043)
USyd 3.50 (0.925)

Risk Averse Analysis Domain OSU 3.12 (0.999)
USyd 3.25 (0.958)

Risk Averse Evaluation Domain OSU 3.40 (1.043)
USyd 3.50 (0.925)

Risk Averse Treatment Domain OSU 3.39** (1.036)
USyd 3.59** (0.848)

Risk Averse All Domains OSU 3.21** (1.051)
USyd 3.34** (0.962)

** p-value is <0.05
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5.5.4 Initial Scale Results

Factor analysis is a statistical technique used to identify clusters of variables [128, 129,

130]. In this research, it was important to investigate whether the variables in the E-

DOSPERT scale were measuring the underlying variables proposed in the engineering

risk domains identified. Several steps were taken in the exploratory factor analysis

of the data collected from the initial E-DOSPERT scale. First an exploratory factor

analysis with oblique target rotation (oblimin) on the correlation matrix of the initial

E-DOSPERT scale items was performed. Items on both the risk averse and risk seeking

scales were removed where the anti-image correlations were <0.50. The KMO measure

of sampling adequacy was sufficiently high (>0.70) and Bartlett’s test of sphericity was

significant, so that a factor analysis could proceed. Based on the number of hypothesized

sub-scales, a four-factor model was specified. A four-factor model explained 49.683%

of the variance in the Risk Seeking Category and 48.536% of the variance in the Risk

Averse Category. Due to space limitations, and to make interpretation of the model

simpler, only those items that load onto only one factor in the models’ factor structure

are shown in Table 5.3 for the Risk Averse dimension and Table 5.4 for the Risk Seeking

dimension [131].

Values in Table 5.3 and 5.4 show that four factors were identified in the data. The

loadings are arranged from higher to lower values in each factor. Substantive loadings

are considered to be those that are >0.40 when ignoring the minus sign. Although the

analysis of these tables suggest that questions in the proposed scale would be composed

by four sub-scales, the identified factors in the tables do not mirror the engineering risk

domains initially proposed.
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Table 5.3: Factor model structure for risk averse dimension. Cutoff value of 0.400 used
to eliminate items.

Component
1 2 3 4

Following standard operating procedures (replicated
question)

0.902

Following standard operating procedures 0.880
Following maintenance strategies according to man-
ufacturer’s

0.752

Having complete data on probability of failure 0.625
Documenting all maintenance procedures 0.540
Referring to authoritative source to check technical
matter

0.586

Miss deadline to complete experimental testing 0.565
“Whistle-blowing” company’s cover up of significant
flaw

0.549

Operating machinery below limits 0.464
Not Upgrading Software 0.416
Investigating unlikely to occur design flaw -0.735
No need for corroboration of experimental results 0.643
Using new equipment after voluntary formal training 0.808
Regular training on risk management 0.764
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Table 5.4: Factor model structure for risk seeking dimension
Component

1 2 3 4
No formal review process 0.774
Ensuring staff awareness of only of major risks 0.716
Conducting root cause analysis only for major failures 0.639
Cut experimental testing to meet deadline 0.523
Not calculating loss at the minimum probability of
failure

0.488

Emphasis on legal, regulatory, and other require-
ments

0.332

Not recording the repairing of a fault 0.750
Never conducting root cause analysis for failures 0.736
Not updating training on risk management 0.646
Quiet about company’s cover up of significant flaw 0.513
Not Documenting all maintenance procedures 0.441
Technology with higher failure but better functional-
ity

-0.632

No full documentation -0.580
Not having complete data on probability of failure -0.579
Allowing minor flaws -0.561
Accepting colleague’s opinion on a technical matter -0.520
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Each separate factor contains items from all four of the hypothesized content do-

mains, suggesting that these four content domains as proposed by ISO 31000:2009 are

not underlying factors in risk behavior judgment. Despite this discrepancy, there is

some uniformity in the interpretation of the factor model structure. In the Risk Averse

dimension, Factor 1 includes items about following established processes and proce-

dures including maintenance and standard operating procedures, Factor 2 relates to

professional ethics and conduct such as ’whistle-blowing’ and relying on professional

bodies to set standards for technical standards, Factor 3 relates to product testing and

Factor 4 relates to training. In the Risk Seeking dimension, Factor 1 includes items

on processes and procedures such as having a formal review process and following best

practice in root cause analysis, Factor 2 contains one item related to legal matters,

Factor 3 relates to professional ethics and conduct such as covering up a significant

flaw and not documenting repairs due to faults and Factor 4 includes items relating to

product functionality and design. Thus the data supports Hypothesis 2 in that four

factors are present but rejects Hypothesis 2 in that the four factors present are not the

factors predicted.

Table 5.5 summarizes the values of Cronbach’s Alpha for the initially proposed

E-DOSPERT scales. The reliability values are shown for the Risk Averse and Risk

Seeking Categories and are sufficiently high (>0.70) given the test length [132]. Based

upon the high Cronbach’s Alpha statistics in Table 5.5, there is strong evidence in

support of the hypothesis that risk tolerant and risk averse behavior is present in en-

gineering risk appetite in a unidimensional scale (Hypothesis 5), and further support

for the hypothesis that engineering risk appetite does not follow the expected value

theorem (Hypothesis 5).
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Table 5.5: Reliability Statistics
E-DOSPERT Cronbach’s Alpha N of Items
Risk Averse 0.758 25
Risk Seeking 0.813 29

Table 5.6 summarizes the values of coefficient alpha and number of items for the ini-

tial E-DOSPERT scale under each of the originally proposed content domains. The val-

ues are shown for the Risk Averse and Risk Seeking dimensions on the initial E-DOSPERT

scale. Only the risk treatment and risk identification sub-scales have a sufficiently high

reliability, although the reliability for assessing risk treatment along the risk seeking

scale is below the generally accepted threshold (> 0.70). This presents further evi-

dence that Hypothesis 2 should be rejected. Respondents were consistent in answering

replicated questions with nearly 100 % answering the questions in the same way.

Table 5.6: Reliability Statistics
Risk Averse Risk Seeking

E-DOSPERT Cronbach’s Alpha N of Items Cronbach’s Alpha N of Items
Identification 0.731 4 0.796 6
Analysis 0.289 8 0.469 9
Evaluation -0.384 3 0.257 5
Treatment 0.726 10 0.614 9

Thus it can be concluded that the four factors originally proposed by the ISO

31000:2009 document including risk identification, risk analysis, risk evaluation, and

risk treatment, are not the underlying factors in engineering risk behavior. However,

there is some uniformity in the interpretation of the underlying model structure. Four

factors appear to be present and can be interpreted.
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5.5.5 Discussion

The results support the hypothesis that engineering risk attitude is domain-specific

(Hypotheses 1, 2, and 3). The authors were able to obtain suitable reliability for at

least two of the sub-scales, risk identification and risk treatment, but not for risk analysis

and evaluation. In the factor analysis, items had moderate to high loadings on their

specified factors, and these factors were not highly correlated, which supports the idea

that risk attitudes are multi-faceted and cannot be captured by a single index. This is

evidence against Hypothesis 2 although analysis did show that four factors exist.

The reliability values for the risk analysis and risk evaluation sub-scales were par-

ticularly low. This means that the respondents were not able to discriminate between

situations that dealt with the analysis of a risk, which concerns understanding the

nature and the degree of the risk through actions such as gathering empirical data,

identifying sources of risk, running numerical simulations, and estimating likelihoods of

occurrence, and questions dealing with the evaluation of risk, which entails reviewing

data from the risk analysis. Given that the means and standard deviations for over-

all risk aversion and risk seeking were very close to 3, meaning “not sure”, and that

the population of respondents were undergraduate students who were unfamiliar with

risk management, the authors speculate that the reliability values may improve if a

population of engineering professionals familiar with engineering risk management was

surveyed. That the students were “not sure” of their risk attitude suggests that this is

an engineering attribute that should be developed.

Nonetheless, the reliability analysis allows the following conclusion about the initial

E-DOSPERT scale:

1. The scale is suitable to measure engineering risk aversion and risk seeking.
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2. The scale is suitable to measure engineering risk aversion and risk seeking along

the subscales of risk identification and risk treatment.

3. The scale is not suitable to measure engineering risk aversion and risk seeking

along the subscales of risk analysis and risk evaluation.

The premise of the initial E-DOSPERT scale was that the four aspects of risk

management could provide commonly encountered content domains by engineers (Hy-

pothesis 2). The authors used these domains to draw out risk behavior judgments from

respondents. While most of the items in the four factor model loaded onto one of the

four factors, they did not load onto them in the predicted way, that is, onto the asso-

ciated content domain. Generalizing from the interpretation of the factor models from

the data, the authors proposed a different set of factors (Hypothesis 6), which were

theorized to provide better coverage of risk-taking situations encountered by engineers

[107, 133].

1. Engineering practice and processes: Situations associated with project processes

and the work of engineering

2. Product functionality: Situations associated with the objectives, requirements,

performance, or failure of the engineered product [107]

3. Legal: Situations associated with legal and regulatory requirements in engineering

and of engineers

4. Engineering ethics: Situations associated with professional and ethical conduct

These factors correspond to domains of engineering risk identified by other re-

searchers [107, 133]. The factors associated with engineering processes and product



111

functionality have been identified by Eckert [133] as generic risk factors based on their

study of design processes across disciplines. The engineering ethics factor has a corre-

lation to the general risk domain of social risk [40] and are suggestive of the generic

engineering risk to the engineer’s reputation [133].

5.6 Retooling of the E-DOSPERT Scale

Based upon the results of the initial E-DOSPERT scale, the authors revised, refined,

and expanded the E-DOSPERT to examine the four factors isolated within the ini-

tial E-DOSPERT data and two additional potential factors the authors identified from

other sources [107]. The six predicted domains include: engineering practice and pro-

cesses, product functionality, legal, engineering ethics, product testing, and training

(Hypothesis 6). This section outlines the revision of the initial E-DOSPERT scale, its

administration, analysis, and a discussion of the results.

5.6.1 Revised E-DOSPERT Scale Development

Questions were developed for each of the six domains based upon professional engineering-

related situations involving risk that practicing engineers commonly encounter. The en-

gineering practices and processes portion of the scale is comprised of questions related

to situations associated with project processes and the work of engineering. The au-

thors consulted project management texts and professional engineering references when

generating the questions. Sample questions include:

• “not fully complying with company procedures in order to meet a project deadline”
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• “having incomplete historical data on the performance of a component”

The engineering ethics portion of the scale focuses on situations associated with

professional and ethical engineering conduct. Classical engineering ethics case studies

were reviewed for inspiration in developing the questions. Sample questions include:

• “taking credit for work done by a colleague”

• “copying design work done for one client for another client”

The testing portion of the scale focuses on product testing. The authors drew upon

their backgrounds in product testing and upon relevant texts to develop questions that

examine the thoroughness and completeness of testing plans. Specific attention was

paid to several areas including verifying calculated data with testing. Sample questions

include:

• “not corroborating computational simulations with experimental results”

• “take reported product malfunctions at face value”

The training portion of the scale was developed to examine how engineers are trained

and how engineers train others. Attention was paid to new equipment, and upgraded

equipment, and the need for additional training or in-depth training. Sample questions

include:

• “not providing training for upgraded machines”

• “not attending continuing education courses to learn new skills”
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The legal portion of the scale focused on situations associated with regulatory and

legal requirements in the engineering profession and of professional engineers. Sample

questions include:

• “you are flexible about complying with engineering regulations”

• “not maintaining full written records of all product testing for compliance with

relevant product regulations”

The product functionality and design portion of the scale was based upon situations

associated with the objectives, requirements, performance, or failure of engineered prod-

ucts [107]. Sample questions include:

• “sub-contracting critical design work to a third party”

• “using an unknown component to perform a critical function because it less expen-

sive than a known suitable component”

In the revised E-DOSPERT test, a seven point Likert scale was used, as was used in

the revised version of the DOSPERT test [47]. The scale ranged from 1 corresponding

to “very unlikely” to 4 corresponding to “not sure” to 7 corresponding to “extremely

likely.” The full Likert scale can be seen in Appendix B. The questions were ordered

randomly.

The revised E-DOSPERT questions were all phrased to measure risk seeking at-

titudes along the above described Likert scale. The authors intentionally did not in-

clude the consistency check of inversely worded questions that was present in the ini-

tial E-DOSPERT questions based upon the data found in the analysis of the initial

E-DOSPERT scale that supports Hypothesis 5. Based upon the results of the initial
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E-DOSPERT scale analysis and similar research [47], inversely worded questions are

not needed to show that the factors are bi-dimensional (risk tolerant to risk averse). A

complete list of questions is presented in Appendix B. The questions were developed

with the goal of being national origin independent. In other words, the questions relate

to engineering matters which are expected to occur anywhere. A total of 65 questions

were tested. The number of items can be reduced in future versions of the E-DOSPERT

survey. The survey in its current form takes approximately 20 minutes to complete.

This large set of questions and resulting data allows exploratory factor analysis to be

performed to determine if the six proposed factors are present or if other factors underlie

risk behavior judgments thus either validating or rejecting Hypothesis 6.

5.6.2 Revised Scale Implementation and Testing

The revised E-DOSPERT scale was administered to undergraduates and graduate stu-

dents at OSU. The survey was administered using SurveyMonkey. Prior to full testing,

the survey was administered to several small groups of students and researchers in order

to validate and refine the questions.

The participant population was comprised of graduate and undergraduate students

enrolled in courses or associated with in the School of Mechanical, Industrial, and

Manufacturing Engineering. In total, 206 students responded. The age range was from

19 to 43, averaging 22 years old. A total of 22 women and 184 men responded to the

survey. The administration of the survey and its contents were approved by the OSU

Institutional Review Board. In future revisions of the E-DOSPERT, larger participant

pools will be sought. Larger data sets allows for higher statistical reliability and a more

thorough vetting of the survey instrument.
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5.6.3 Revised Scale Results

Factor analysis was performed on the resulting data in a manner similar to Section

5.5.4. An exploratory factor analysis with oblique target rotation (oblimin) and using

Maximum Likelihood Extraction (MLE) [130] was performed. The Kaiser-Meyer-Olkin

(KMO) was sufficiently high (0.795) and Bartlett’s test of sphericity was significant

(< 0.05) allowing factor analysis to proceed. Based upon the number of hypothesized

sub-scales, a six factor model was specified. A six factor model explained 43.696% of

the variance in the scale. Several iterations of purging items that loaded poorly or

onto multiple factors and verifying item communalities were performed. However, the

analysis ran into ultra-Heywood cases, an impossible outcome where factor loadings

are greater than 1.0 [130]. This led the authors to reexamine the supposition of a six

factor model. The scree plot indicated that a five factor model might also be present.

A five factor model explained 40.617% of the variance in the scale. Several iterations

of removing poorly loaded items and verifying communalities were performed. The

resulting scale has a KMO of 0.806 and Bartlett’s test of sphericity was significant. The

goodness-of-fit test was not significant indicating that the model is a good match to

the data. Table 5.8 provides additional statistics for the full scale. Table 5.7 presents

the five factors that were identified and the associated values. Table 5.9 shows the

reliability of each factor that was identified.



116

Table 5.7: Factor model structure for revised E-DOSPERT

Component

1 2 3 4 5

Not documenting every single step that was

taken to design a new component (PnP)

.740

Not fully complying with company proce-

dures in order to meet a project deadline

(PnP)

.667

Having incomplete historical data on the per-

formance of a component (PnP)

.626

Not having complete data on the probabil-

ity of failure for each component in a system

(PFnD)

.560

Copying design work done for one client for

another client (E)

.445

Exaggerating your company’s competencies

in order to win a contract (E)

.813

Accepting a weekend holiday(vacation) from

potential contractors (E)

.612

Use consumable work resources for home

projects (E)

.543
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Table 5.7 – Factor model structure for revised E-DOSPERT (Continued)

Component

1 2 3 4 5

Reverse engineer a competitor’s technology

with the intent to bring to market a nearly

identical copy (E)

.470

Protect your client’s confidentiality by not re-

porting to a regulatory agency a negligent be-

havior by the client (E)

.433

Not giving much consideration about whether

the product can be recycled or disposed of

in a safe, secure and environmentally sound

manner (E)

.428

Not attending compulsory formal training for

new machines (T)

-.778

Not providing training for upgraded machines

(T)

-.691

Not following standard operating procedures

systematically (PnP)

-.497

Not investigating a suspected design flaw be-

cause you don’t think it is likely to happen

(PT)

.620
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Table 5.7 – Factor model structure for revised E-DOSPERT (Continued)

Component

1 2 3 4 5

Using an unknown component to perform

a critical function because it less expensive

than a known suitable component (PFnD)

.520

Relying upon the risk management practices

you learned at university rather than regu-

lar continuing education on new risk manage-

ment techniques (T)

.513

Going into detailed design with the first de-

sign concept you came up with (PFnD)

.441

Verifying that your product is in compliance

with all applicable environmental, health,

and safety laws and regulations (L)

.590

Glance at the operating procedures for a new

product prior to use (T)

.566

Placing higher emphasis on legal, regulatory,

and other requirements over operating prof-

itability (L)

.436

Note: (E) = Ethics, (PT) = Product Testing, (PFnD) = Product Functionality and De-

sign, (L) = Legal, (PnP) = Processes and Procedures, (T) = Training. This represents

the proposed six factors of engineering risk appetite.
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Table 5.8: Scale Statistics
Mean Variance Std. Dev. N Cronbach’s Alpha
73.02 188.074 13.714 21 0.800

Table 5.9: Factor Reliability
Factor Cronbach’s Alpha N of Items
Factor 1 0.759 4
Factor 2 0.750 6
Factor 3 0.699 3
Factor 4 0.638 4
Factor 5 0.521 3

5.6.4 Discussion

The results of the revised E-DOSPERT analysis show strong evidence of a five factor

scale. The authors were able to obtain suitable reliability for Factors 1 and 2 where

Cronbach’s Alpha was significant (> 0.70) [134] and marginal reliability for Factors 3

and 4 (> 0.60) [128]. The reliability of Factor 5 is low but there is evidence that a fifth

factor exists.

The premise of the revised E-DOSPERT scale is that six factors of engineering risk

appetite are present. The six proposed domains were identified in the analysis of the

initial E-DOSPERT test data. While many of the items in the six factor model loaded

onto one of the six factors, an ultra-Heywood case was encountered that indicated a six

factor model was incorrect. Based upon indications from the scree plot, a five factor

model was then adopted and explored. Based upon an interpretation of the factor

models from the data, the authors propose the following set of factors:

1. Processes, Procedures, and Practices: all five of the questions relate to the best

processes, procedures, and practices that an engineer should follow in their pro-

fessional lives.
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2. Engineering Ethics: All six questions are based upon ethical dilemmas encoun-

tered by practicing engineers.

3. Training: The three questions that loaded onto Factor 3 relate to conducting

training and following guidance given by training.

4. Product Functionality and Design: The four questions that loaded onto Factor 4

relate to the functionality and design of products.

5. Legal Issues: Two of the three questions that load onto Factor 5 relate to legal

issues.

Of the six factors anticipated by the authors, five factors are present and inter-

pretable in the revised E-DOSPERT survey data. Additional analysis was conducted

to verify that higher numbers of factors were not present. Based upon the authors’

analysis, no additional interpretable factors appear in the data. While the pool of par-

ticipants was lower than desired (n=206) and the reliability of several factors was lower

than ideal, the evidence points toward a five factor model that contains factors pre-

dicted by the authors. Further replication of the test should be performed with other

sample populations to confirm and further strengthen these findings.

5.7 E-DOSPERT Applications

The E-DOSPERT survey in its current form and in future revisions is useful to the prac-

titioner and researcher for several reasons. For instance, administering an E-DOSPERT

test to an engineer can provide valuable insight into how that engineer will behave in

engineering risk situations. This allows for targeted training to be given to the engineer
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in order to correct for any differences in engineering risk appetite from what the position

requires that the engineer fills.

The E-DOSPERT test could be used as part of a hiring process. Already many

companies administer personality type tests such as the Meyers-Briggs Type Indi-

cator (MBTI) [135] and others. With a proper understanding of the results of an

E-DOSPERT test, hiring managers can be expected to make more informed choices on

hiring engineers.

Stakeholder risk preference can be collected using the E-DOSPERT. Rather than

requiring stakeholders to be present to provide input on their engineering risk appetite,

design engineers can refer to the stakeholders’ E-DOSPERT scores. This can be ex-

pected to save time and produce results more in line with what the stakeholders intrin-

sically desire.

A method can feasibly be developed based upon the E-DOSPERT survey that trans-

lates expert opinions from individual scales to a normative scale. In other words, judging

the risk of a product failure on a scale of 1 to 10 might elicit a response of 7 from one

expert and a response of 5 from another. Those two different numbers might simply

be the result of different internal scales. Normalizing those expert opinions using the

E-DOSPERT might result in the discovery that both experts mean the same thing.

Another area that is already being actively developed is using E-DOSPERT test

results to generate utility risk curves. These utility risk curves can then be used to

analyze early conceptual system design trade studies that contain risk as a tradeable

parameter. Decision aids and decision automation can also take place using utility risk

curves generated from E-DOSPERT results [89].
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5.8 Conclusion

This paper presented the incremental development of an instrument, the E-DOSPERT

scale, to measure the risk aversion and risk seeking attitude of engineers. The initial

version of the E-DOSPERT scale tested the validity of the ISO 31000:2009 standard

and its recommended four content domains for risk management as the basis for risk

behavior judgment. Two of the domains, analysis and evaluation, were found to be not

easily discriminated, at least in a population of engineering undergraduates. Based on

an exploratory factor analysis with oblique target rotation, the authors suggested four

other factors that may underlie the risk behavior judgments. Based upon further insight

into the data, two potential domains were added. A revised version of the E-DOSPERT

scale was then produced and tested.

Items in the revised E-DOSPERT scale are based on commonly encountered engi-

neering risk scenarios and scenarios based in risk management. The results show that

the scale is suitably reliable to measure engineering risk appetite in two domains includ-

ing processes, procedures, and practices; and engineering ethics. The scale is marginally

suitable to measure engineering risk appetite in two additional domains including train-

ing, and product functionality and design. A fifth domain, legal issues, appears to be

present but is not statistically reliable.

Thus, in its current form, the E-DOSPERT scale can be used to assess processes,

procedures, and practices; and engineering ethics domains, and at the option of the

practitioner, two additional domains including training, and product functionality and

design may be assessed. The authors suggest that users of the scale remove items on

legal issues domain. In future work, the authors will revise items on the three factors

that do not have as significant of statistical backing as the other two factors. Addi-



123

tional testing of the survey will be performed over larger sample populations to gain

further statistical validity. Tests at multiple universities and in multiple countries will

be performed. An examination of the role that educational level and tenure length in

career play will be examined in forthcoming research. A survey of engineers different

industries shall be conducted in order to understand variation between industries and

sub-disciplines. After careful vetting, the E-DOSPERT will be made available in multi-

ple languages. Once these further steps are taken, such an instrument can then be used

as a standard to assess risk attitude across industries, within organizations, by gender

and national origin, and as pre and post tests on the development of risk-assessment as

an engineering attribute in engineering education. The authors believe that such infor-

mation is crucial in interpreting how individual engineers approach design and design

decision-making.
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5.10 Appendix A: The Initial E-DOSPERT Scale

The initial E-DOSPERT test presented in this appendix was administered online using

Survey Monkey. The questions were automatically randomized when presented to the

respondents. Below the questions are presented in alphabetical order.

For each of the following statements please indicate the likelihood of engaging in

each activity. Please provide a rating using the following scale:

Very Unlikely Unlikely Not Sure Likely Very Likely

1 2 3 4 5

1. “Whistle-blowing” your company’s cover up of a significant design flaw. (T)

2. Accepting the results of computational simulation and analysis without experi-

mental corroboration of results. (A)

3. Accepting your colleagues’ opinion about a technical matter without checking the

originating source. (A)

4. Adjusting standard operating procedures to handle a design flaw to better fix the

flaw. (T)

5. Allowing minor flaws through on a production line to keep the line moving. (T)

6. Applying a new process recommended in a prestigious journal even if it is not an

industry-wide standard. (A)

7. Calculating potential loss from a design fault at the minimum probability of fail-

ure. (A)
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8. Conducting a root cause analysis every time that a failure occurs. (A)

9. Conducting a root cause analysis of major failures but not of minor failures. (A)

10. Conducting maintenance according to what you think is best rather than following

manufacturer recommended maintenance strategies. (T)

11. Continuing to use an outdated but robust piece of software even if others in your

group choose to upgrade to a new version. (A)

12. Cut back on experimental testing to meet a project deadline. (A)

13. Ensuring that all staff know about potential risks no matter how minor. (I)

14. Following maintenance strategies exactly according to manufacturer specifica-

tions. (T)

15. Following standard operating procedures word-for-word for the handling of any

design flaw. (T)

16. Formally documenting all maintenance procedures. (T)

17. Fully documenting every design change, no matter how minor. (I)

18. Further investigating a design you suspect has a flaw that you estimate is not

likely to occur. (I)

19. Halting a production line immediately if any flaw, no matter how minor, is iden-

tified. (T)

20. Having complete data on the probability of failure for each component in a system.

(I)
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21. Having formal review processes to review and analyse the history of design faults.

(A)

22. Having no formal review process to analyse and review the history of design faults.

(A)

23. Ignoring a colleague’s suggestion to investigate a major but unlikely design flaw.

(A)

24. Informing staff only about potential major risks but not about minor risks. (I)

25. Introducing a design change (i.e., a new type of screw) without full documentation

because you think it’s a minor change. (I)

26. Making a design change if a component’s failure rate is close to but below the

industry standard for component failure. (T)

27. Miss a project deadline to conduct complete experimental testing. (A)

28. Never conducting root cause analysis for failures. (A)

29. Not bothering to calculate potential loss from a design fault at the minimum

probability of failure. (A)

30. Not documenting all maintenance procedures. (T)

31. Not having complete data on the probability of failure for each component in a

system. (I)

32. Not making a design change if its failure rate is close to but below the industry

standard for component failure. (T)
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33. Not trusting informed estimations of probabilities in a structured decision making

process. (A)

34. Operating machinery at the limits of safety and availability. (T)

35. Operating machinery well below capacity and far within the limits of safety. (T)

36. Placing more emphasis on legal, regulatory, and other requirements over operating

profitability. (E)

37. Placing more weight on a major fault that may never occur than a major fault

that occurs often. (E)

38. Placing more weight on a major fault that occurs on a regular basis than one that

may never occur. (E)

39. Recording a major fault but not a minor fault. (I)

40. Referring to an authoritative source to check your colleagues’ opinion about a

technical matter. (A)

41. Relying on experience over formal processes when vetting decisions. (E)

42. Repairing a fault but not recording the number times you have needed to fix the

fault. (I)

43. Staying quiet about your company’s cover up of a significant design flaw. (T)

44. Trusting experimental results even when they do not align with analytical calcu-

lations. (E)

45. Trusting informed estimation of probabilities in a structured decision making pro-

cess. (A)
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46. Upgrading your design analysis software as soon as a new version is available even

if it is not used by others in your group. (A)

47. Using a new piece of equipment without optional formal training. (T)

48. Using a technology that has a higher failure rate than a current one but that has

better functionality. (E)

49. Using a technology with a lower failure rate than another one but at the expense

of functionality. (E)

50. Using an industry-wide standard rather than a new process recommended in a

prestigious journal. (A)

51. Using risk management practices that were industry best practices when you

learned them but not keeping up-to-date with current practices. (A, E, T, I)

52. Voluntarily attending formal training before using a new piece of equipment. (T)

53. Voluntarily taking formal training on a regular basis on industry best practices in

risk management. (I)

54. Using risk management practices that were industry best practices when you

learned them but not keeping up-to-date with current practices. (I)

Note: (A) = Risk Analysis, (T) = Risk Treatment, (E) = Risk Evaluation, (I) = Risk

Identification
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5.11 Appendix B: The Revised E-DOSPERT Scale

The revised E-DOSPERT test presented in this appendix was administered online using

Survey Monkey. The questions were automatically randomized when presented to the

respondents. Below the questions are presented in alphabetical order.

For each of the following statements please indicate the likelihood of engaging in

each activity. Please provide a rating using the following scale:

Very Un-

likely

Moderately

Unlikely

Somewhat

Unlikely

Not Sure Somewhat

Likely

Moderately

Likely

Very

Likely

1 2 3 4 5 6 7

1. Accepting a weekend holiday(vacation) from potential contractors (E)

2. Adding many extra features to a product beyond original specifications (PFnD)

3. Assuming unfavorable test results from an early production prototype will improve

after the next prototype is constructed (PT)

4. Certify a document as a qualified, professional engineer that is outside of your

area of expertise (E)

5. Competent professional engineers need not be registered with a professional body

that regulates appropriate professional practice (L)

6. Comply with your supervisor’s instruction to withhold information from a client

(E)

7. Consult the professional engineering code of conduct regularly (L)
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8. Contracting product testing to a specialist outside firm (PT)

9. Copying design work done for one client for another client (E)

10. Designing a product in a manner that emphasizes profitability over protecting the

environment, and the health, safety and security of end-users (E)

11. Developing only general but not detailed operation guidelines for a piece of equip-

ment (PnP)

12. Disregarding the company Standard Operating Procedures on design processes

when starting a new design (PnP)

13. Exaggerating your company’s competencies in order to win a contract (E)

14. Glance at the operating procedures for a new product prior to use (T)

15. Going into detailed design with the first design concept you came up with (PFnD)

16. Having incomplete historical data on the performance of a component (PnP)

17. Including a component in a product for which there is only one supplier (PFnD)

18. Investigating product failures only when you think it is important (PT)

19. Leave it up to your customers to decide if they want to receive training on the

safe operation of your product (T)

20. Let your workgroup discover new industry standards on their own (T)

21. Making decisions based on personal experience and intuition rather than evidence

(PnP)
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22. Not actively seeking information about the patent law in countries where you are

operating (L)

23. Not assessing failure risk for incremental changes to a product (PFnD)

24. Not attend continuing education courses to learn new skills (T)

25. Not attending compulsory formal training for new machines (T)

26. Not consult legal counsel on how to proceed if accused of improper conduct related

to an engineering matter (L)

27. Not corroborating computational simulations with experimental results (PT)

28. Not documenting every single step that was taken to design a new component

(PnP)

29. Not following standard operating procedures systematically (PnP)

30. Not following the exact manufacturer-recommended maintenance strategies (PnP)

31. Not formally benchmarking your product against competing products (PFnD)

32. Not fully complying with company procedures in order to meet a project deadline

(PnP)

33. Not fully understanding the limitations of "canned" calculations prior to using

them (PT)

34. Not giving much consideration about whether the product can be recycled or

disposed of in a safe, secure and environmentally sound manner (E)
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35. Not having an independent person or department audit quality assurance pro-

grams (PnP)

36. Not having complete data on the probability of failure for each component in a

system (PFnD)

37. Not investigating a suspected design flaw because you don’t think it is likely to

happen (PT)

38. Not maintaining full written records of all product testing for compliance with

relevant product regulations (L)

39. Not providing training for upgraded machines (T)

40. Not testing a product for functionality beyond its intended purposes (eg: using a

hammer handle as a lever) (PT)

41. Offer no follow-up, refresher training on how to operate equipment (T)

42. Placing higher emphasis on legal, regulatory, and other requirements over oper-

ating profitability (L)

43. Protect your client’s confidentiality by not reporting to a regulatory agency a

negligent behavior by the client (E)

44. Rely only upon the manual of a new product that your company is deploying to

learn safe operating procedures (T)

45. Relying on unwritten knowledge rather than documenting minor changes to pro-

cedures (PnP)
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46. Relying upon computer simulation models to predict product failure modes with-

out confirming by empirical testing (PT)

47. Relying upon the risk management practices you learned at university rather than

regular continuing education on new risk management techniques (T)

48. Reverse engineer a competitor’s technology with the intent to bring to market a

nearly identical copy (E)

49. Seeking legal counsel about tort(liability) laws that might have an impact on your

product (L)

50. Selling a product claiming high reliability based upon calculations but without

extended field testing to back up the computational models (PT)

51. Staying quiet about your company’s cover up of a significant design flaw (E)

52. Sub-contracting critical design work to a third-party (PFnD)

53. Take reported product malfunctions at face value (PT)

54. Taking credit for the work done by a colleague (E)

55. Use consumable work resources for home projects (E)

56. Using a new technology with better functionality but that has a higher failure

rate than a current technology (PFnD)

57. Using an unknown component to perform a critical function because it less ex-

pensive than a known suitable component (PFnD)

58. Verifying that your product is in compliance with all applicable environmental,

health, and safety laws and regulations (L)
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59. When serving as an expert witness, letting your previous experience with one of

the litigating companies influence your testimony on the resolution of a dispute

of a technical matter (E)

60. Withhold information from the general public about risks associated with a spe-

cific technology that is relevant to the public’s health and welfare (E)

61. You are flexible about complying with engineering regulations (L)

Note: (E) = Ethics, (PT) = Product Testing, (PFnD) = Product Functionality and

Design, (L) = Legal, (PnP) = Processes and Procedures, (T) = Training.
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6.1 Abstract

Engineering risk methods and tools account for and make decisions about risk using

an expected value approach. Psychological research has shown that stakeholders and

decision-makers hold domain-specific risk attitudes that often vary between individuals

and between enterprises. Further, certain companies and industries such as the nuclear

power industry and aerospace corporations are very risk-averse while other organiza-

tions and industrial sectors such as IDEO, located in the innovation and design sector,

are risk-tolerant and in fact thrive by making risky decisions. Engineering risk methods

such as FMEA, FTA, and others are not well-equipped to help stakeholders make deci-

sions under risk-tolerant or risk-averse decision-making conditions. This paper presents

a novel method to translate engineering risk data from the expected value domain into

a risk appetite corrected domain using utility functions derived from E-DOSPERT psy-

chometric test results under a single criterion decision based design approach. The

method is aspirational rather than predictive in nature on the basis of using a psycho-

metric test rather than lottery methods to generate utility functions. Using the method,

decisions can be made based upon risk appetite corrected risk data. We discuss devel-

opment and application of the method based upon a simplified space mission design in

a collaborative design center environment. The method is shown to change risk-based

decisions in certain situations where a risk-averse or risk-tolerant decision-maker would

likely choose differently than the expected value approach dictates.

Keywords: Risk-Based Design, Utility Theory, Risk Appetite, E-DOSPERT, Decision

Support.
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6.2 Introduction

Risk is found throughout engineering design. Engineering risk methods such as FMEA,

FTA, and others are used across the spectrum of complex system design to identify

these risks. Specifically, such methods are designed to guide decision-makers to choose

the least risky options, mitigate the largest risks, and create risk-averse or fault-tolerant

designs. Such an approach works well for traditionally risk-averse sectors such as the

aerospace and nuclear power industries. However, not all industries and enterprises

thrive on risk aversion. Many of the most successful Web 2.0 companies such as Google

and Facebook and product design companies such as IDEO have become wildly suc-

cessful because they take risks that traditional, risk-averse companies are not willing to

take. There is no one correct level of risk attitude across all industries.

Many methods exist in engineering design to account for risk such as FFIP [67],

RED [69], FFDM [68], FMEA [87], and others. However these methods do not account

for risk appetites of enterprises or individual decision-makers. Research in psychology

has produced the well-respected DOSPERT test which enables risk appetite determi-

nation in several different domains of daily life [40]. Recent advancements have created

the E-DOSPERT test that has the goal of categorizing and determining engineering-

specific risk domains [85]. This research seeks to find a link between the engineering risk

appetite information that the E-DOSPERT test provides with traditional and widely

used engineering risk methods.

Specifically, this paper presents a novel way to account for risk appetite in risk-based

design. A single criterion decision based design approach is adapted by way of engineer-

ing risk appetite utility functions to bring risk data from the expected value domain

into a risk appetite domain appropriate to the enterprise or individual stakeholder. The
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risk appetite utility functions are developed via E-DOSPERT test results rather than

traditional lottery methods. By viewing risk data through a risk appetite lens, stake-

holders and decision-makers can make risk decisions with analytic backing that would

traditionally be justified with “gut feeling.” An important distinction is drawn between

appropriate uses of lottery-derived risk utility functions and E-DOSPERT-derived risk

utility functions. Lottery methods of risk utility functions generation are suitable for

later stage conceptual system design and beyond while the authors advocate for using

E-DOSPERT-derived risk utility appetite functions for early phase conceptual system

design. Psychometric tests such as E-DOSPERT are aspirational in nature while lot-

tery methods are predictive of future decisions [77]. The method presented in this paper

specifically provides a means of aspiring to the intrinsic risk appetite of the E-DOSPERT

test-taker rather than using past performance as gaged by lottery methods to predict

future performance. In the early phases of conceptual design it is more useful to aspire

to create something new than to use the same decision patterns as have been done in

the past.

The method presented in this paper can be used upon any type of risk to which a

dollar figure can be attached. This paper uses product-related risk examples. However,

other risks such as those found in project management or elsewhere may also be used

with this method.

It is important to note that this method does not claim to produce a “right” or

“wrong” decision. The suitability of the decisions that can be supported with the method

presented in this paper are based in the attitude of the decision-maker as defined by

the decision-maker’s decision criteria. There are no “right” or “wrong” decision criteria

but instead criteria that are more or less important to the decision-maker [136]. The

method developed in this paper provides a different, novel criteria that decision-makers
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may use when making risk-based decisions. As the case study demonstrates, decisions

can have different results when made based upon the information produced by this

method.

Risk-averse decision-makers and enterprises will find this method useful in highlight-

ing risks with higher certainty. A risk-averse stakeholder tends to favor high certainty

over low certainty options. Similarly, risk-tolerant decision-makers and enterprises will

find that identifying large risks will drive potential innovation and profit [137]. For

these reasons, this paper develops a novel way to account for risk appetite in risk-based

design.

The method presented in this paper holds significance for intelligent decision sup-

port systems based upon the method’s ability to inform the user of the preferred design

choice, based upon risk information, of the stakeholder for whom the user is designing.

In this way, partial automation of the engineering risk decision-making process can be

realized. Additionally, the method can be used by an engineer to support their own

decision-making process by providing quantitative backing to “gut feeling” decisions.

Further, the method is intended to be used as a real-time decision support system rather

than a post-design confirmatory tool. The method presented in this paper can be au-

tomated if decision-maker risk attitudes are known. This would be useful in automated

design trade studies and other design automation applications where decision-maker

input is desired but where each design iteration does not need fresh decision-maker

input.

In the following sections, background is provided in several highly relevant fields

for the proposed method. Coverage includes design trade studies, risk analysis in col-

laborative design centers, the psychology of assessing and judging risk, decision-based

design, and risk-based utility theory. The novel method of accounting for risk appetites
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in risk-based design is then developed and demonstrated using an illustrative exam-

ple. A case study based upon a simplified satellite conceptual design development and

selection process is presented next to emphasize the benefits of this new method in a

realistic complex design setting. The paper concludes with a discussion of the bene-

fits and drawbacks of the proposed method, and presents future work to expand the

method.

6.3 Background

The method presented in this paper makes use of several domains of engineering and

psychology. This section reviews the topics of engineering risk, trade studies, the psy-

chology of assessing and judging risk, and decision-based design, each of which is used

in developing the risk appetite utility function method.

It is important early on in this paper to define the terms risk, utility, riskiness, value,

and uncertainty. Risk can hold many different meanings but, unless otherwise noted,

for the purposes of the method developed in this paper, risk is defined as the probability

of uncertain events [138] and the values of potential outcomes. A certainty equivalent

value (CE(V )), based upon utility theory, is developed and found in conjunction with

the probability of an outcome in order to find the equivalent value of a specific risk.

This is analogous to the classical engineering context where risk can be defined as the

probability of occurrence multiplied by the severity of the outcome of the event but is

more closely aligned with the ISO 31000:2009 definition of risk which defines risk as the

effect of uncertainty on objectives [57]. In this paper, utility is defined as a measure

of satisfaction of a choice or result [76]. In the context of finance, riskiness refers to

the riskiness of an option which is equated to its variance. However, in psychological
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risk-return models, perceived riskiness is treated as a variable that can differ between

individuals as a function of the context and content of the decision choice [40]. Value

is defined as the worth of a decision, outcome, good, or service. Often this is given a

monetary designation. This paper uses the Dollar ($) as a monetary value designator.

Finally, uncertainty is defined as the potential of more than one outcome, state, or result

where the probabilities are ill-defined [139]. It should be noted that engineers often

group together related concepts such as reliability [61], robustness [62], and uncertainty

[58] with the strict definition of risk into a meta-risk category that is also referred to as

“risk.”

6.3.1 Trade Studies and Different Priorities

Design trade studies are found throughout the design process. They are often employed

in creating conceptual complex system designs. Trade studies can be used to create

many potential designs quickly through automated software packages such as Model-

Center (http://www.phoenix-int.com) or ATSV [93] as part of ModelCenter. Trade

studies are also used by teams of people to conduct manual trade study sessions [10].

Automated trade studies can also be performed by computers using conditions and

bounds set by users. Many thousands of conceptual designs can be quickly created

with an automated trade study. Manual trade studies are conducted by groups of

system experts where only one or a handful of conceptual designs will result.

Trade studies are based upon the search for maximum system utility. Trade-offs are

made between system design variables in order to achieve maximum utility [7]. This is

represented as max f(Ð⇀U ) where
Ð⇀
U represents relevant system utility metrics. System

utility metrics are to be chosen by design stakeholders. In the case of automated
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trade studies, different stakeholders will have different design preferences. The most

preferred design of one engineer will most likely not be the most preferred design of

another engineer. In practice, little guidance exists in the literature on how to create

utility functions with appropriate selection criteria for different design situations, such

as design of high risk space exploration.

CDCs often will perform manual trade studies as part of the design process. The

most cited example of a CDC is Team-X which is housed in the PDC at JPL and

develops conceptual spacecraft mission designs [10]. In such manually conducted trade

studies, subsystem experts often disagree over which tradeable parameters are the most

important [2, 3, 4]. A variety of methods are available to resolve design decision conflicts

in both automated and manual trade studies [5, 6]. However, these methods do not

take into account individual or enterprise-level risk appetites.

6.3.2 Risk Analysis Tools

Many methods exist to analyze and account for engineering risk in the design process.

Examples are: RBD [63], PRA [64], FMEA [65], FTA [66], and other methods are

commonly found in industry. Other methods such as FFIP [67], FFDM [68], and RED

[69] are being actively developed in academia and will see industrial deployment in the

future.

Several tools have been developed to support risk analysis in trade studies for CDCs.

Team-X uses RAP, a PRA-based assessment software package [20]. The RAP tool is

used to capture unusual risks that are identified during trade study sessions. One

engineer is tasked with cataloging these risks, and, with the assistance of stakeholder

subsystems engineers, develops likelihood and impact assessments, and mitigation meth-
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ods with associated costing information. Other risk analysis programs and methods are

under development and in use by other CDCs.

The methods such as FTA and FMEA, and tools such as trade studies commonly

deployed in industrial settings, and reviewed in the previous section, view risk as an

expected value choice. For example, if an engineer must make a decision between

one risk that has a 1% chance of occurrence and has a consequential cost of $10,000

and another risk that has a chance of 0.1% of occurrence and a consequential cost

of $100,000, engineering risk methods would indicate that both risks are equal with

regards to expected value. Therefore, either can be chosen with the same expected value

outcome. However, this ignores individual and company risk attitude. The method

presented in this paper allows for individual and enterprise risk appetites to be expressed

during the risk decision-making process.

6.3.3 The Psychology of Assessing and Judging Risk

Risk plays an integral role in engineering design. Highly innovative design firms embrace

risk as an essential ingredient in their success. On the other hand, some entire industries

such as aerospace and nuclear power, are very risk-averse. Research in risk trading in

engineering design shows that different engineers have different opinions of what makes

an acceptable risk [83]. Clearly there is no single correct level of acceptable risk for all

situations or all people.

In psychology, risk is classically defined as the parameter that differentiates between

different individuals’ utility functions [28]. The utility function of individuals is gener-

ally expressed as a quadratic, logarithmic, or exponential function [76]. This classic EU

approach to risk theorizes that an individual can be modeled choosing between risky
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Figure 6.1: Risk-Tolerant Utility Function for Money.

options as the function of the return of the options, the probability of the options occur-

ring, and the risk aversion of the individual [30]. Figure 6.1 shows a risk-tolerant utility

function for money. Within the EU framework and other related methods [31], the func-

tion of an individual’s utility function denotes the individual’s risk attitude as either

risk-averse (i.e., someone who does not like to take risks), risk neutral (i.e., someone who

takes necessary short-term risks to deliver long-term outcomes), or risk-tolerant (i.e.,

someone who is comfortable with handling larger risks if necessary) behavior [60, 32].
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The theory of risk attitudes in the context of EU has been challenged by the twin

issues of inconsistent risk profiles across risk domains and cross-method utility instability

[33, 140, 49, 34]. Different risk-averse or risk-tolerant classifications often result when

different methods are used to measure people’s utility [33]. Further, individuals are not

consistent across different risk domains. While a person might be risk-averse making

financial decisions, they could be risk-seeking in social situations [34].

Other methods have been developed within psychology to make up for the short-

comings of the EU framework. For instance, the risk-return framework of risky choice

models people’s preference for risky options based upon a trade-off between the EV and

the riskiness of the choice. This is analogous to the way most engineering risk methods

differentiate between risk choices. Psychology extends this to treat perceived risk as a

variable that differentiates individuals based upon content and context interpretations.

The framework allows people to have different risk preferences in different domains [40]

and accounts for desiring risk in some areas while preferring caution in others by the

concept of perceived risk attitude. Variances in perceived risk attitude are viewed to

be the result of differences in perception of risks and benefits between a decision-maker

and an outside observer. For instance, in the management field, managers have less op-

timistic perceptions of risk than entrepreneurs [43]. The risk-return framework shows

that a person’s perception of risk affects the choices that person will make.

In order to assess risk perceptions and attitudes within different domains, the

DOSPERT test and related scale were created [40]. Six independent domains were iden-

tified including the ethical, investment, gambling, health/safety, recreational, and so-

cial domains within which the majority of day-to-day activities can be categorized. The

DOSPERT test is seeing widespread adoption in psychology. Recently, the E-DOSPERT

test [85] was proposed as a method to determine engineering-specific risk attitudes as
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defined by four engineering risk domains including risk identification, analysis, evalua-

tion, and treatment [57]. The E-DOSPERT scale has been shown to reliably measure

general engineering risk aversion and risk seeking attitudes. It can also measure risk

seeking and risk aversion attitudes in the risk identification and risk treatment do-

mains. Additional research is underway in order to fully measure the four engineering

risk domains. The DOSPERT and E-DOSPERT tests provide evidence of the need for

a method to make risk decisions based on tolerant or averse risk appetites.

6.3.4 Decision-Based Design

To address the growing recognition within industry and the engineering research com-

munity [70, 71, 72, 73] that decision-making is a fundamental part of the design process,

the DBD framework was developed. A decision-theoretic methodology is utilized to se-

lect preferred product design alternatives and set target product performance levels. A

single selection criterion, V , in the DBD implementation represents economic benefit

to the enterprise [73]. This approach avoids the difficulties of weighting factors and

multi-objective optimization which can violate Arrow’s Impossibility Theorem [74]. A

utility function, U , which expresses the value of a designed artifact to the enterprise

when considering the decision-maker’s risk attitude, is created as a function of the se-

lection criterion, V . A preferred concept and attribute targets are selected through the

maximization of enterprise utility.

In order to effectively use the single criterion approach to DBD, the selected criterion

must be able to capture all of the issues involved in the engineering design such as system

features, costs, risks, physical restrictions, and regulatory requirements. The single

criterion should allow both the interests of the users and producers of the system to



147

be considered. In most industrial cases, the most universal unit of exchange is money.

Material, energy, information, faults and time can all be assigned a monetary value.

This can be seen in many design decision-making processes and is practiced widely in

industry.

One use of single criterion DBD developed by Hoyle et al. [75] employs profit as

the criterion in a method to determine optimum system configuration for ISHM. The

determination of system profit is made from the product of system availability and

revenue, minus the summation of cost of system risks, and the cost of fault detection.

This method can determine optimal ISHM while also determining the optimum detec-

tion/false alarm threshold and inspection interval. Using the method has been found to

increase profit by 11%, decrease cost by a factor of 2.4, and increase inspection intervals

by a factor of 1.5 [75].

6.3.5 Risk-Based Utility Theory

One approach to analyzing choice outcomes from a non-neutral expected value per-

spective is to use risk-based utility theory [31]. The utility of a range of probabilistic

outcomes can be determined in order to aid decision-makers. This is done by trans-

lating monetary outcomes to utilities. A risk-tolerant decision-maker’s higher intrinsic

value for riskier decisions skews the utility of those decisions higher than a risk-neutral

or risk-averse decision maker’s utility of the same decisions. Figure 6.2 shows that for a

Normal distribution of outcomes, a risk-tolerant person’s utility distribution will shift

to be more heavily skewed toward higher value outcomes. Utility distributions for risk-

averse individuals will skew more heavily toward lower value outcomes, as can be seen

in Figure 6.3. The risk neutral state, shown in Figure 6.4, does not weight outcomes
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in either direction along the utility axis. As can be seen in Figures 6.2 through 6.4,

different utilities are found based upon a decision-maker’s risk appetite.

Figure 6.2: Risk-Tolerant
Utility Function.

Figure 6.3: Risk-Averse
Utility Function.

Figure 6.4: Risk Neutral
Utility Function.

Currently accepted methods of developing utility risk functions, such as those in

Figures 6.2 through 6.4, require a series of lotteries to be conducted [31]. Several sets

of paired choices are presented sequentially to an individual. These are often presented

as lotteries where a participant selects amongst paired probabilistic alternatives. A

utility risk function is then fitted to the lottery results. Common functions include

quadratic, logarithmic, and exponential functions [76]. In currently accepted methods

of risk utility function generation, the choice of which form a risk utility function should

take is at the discretion of the decision-maker and based upon results of lotteries. The

scale of the value axis of the utility function is set to the minimum and maximum limits

of the values used to conduct the lotteries.
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Developing and conducting lotteries is time-consuming and not intuitive to end-

users [77]. Also, the utility functions derived from lotteries are only valid for the range

of values used in the lottery. Therefore, while useful in many areas, lottery-based

methods of utility risk function generation are not always useful. Pennings and Smidts

[77] investigated using psychometric risk attitude test results to create risk functions

for Dutch hog farmers to predict individual farmer behavior in hog futures markets.

The results of the research found lotteries to be the most accurate method of predicting

behavior in the context of the hog futures market. However, the hog farmers’ self-

reported behavior predictions were most closely correlated with the psychometric risk

attitude test results. The farmers also indicated that the psychometric risk attitude

test was more understandable than the lottery method.

In this paper, the authors postulate that, while lottery methods of utility risk func-

tion generation are satisfactory for many DBD situations, they are not as useful for

early-phase conceptual design. Lottery-based risk functions are only valid over the

range of values used in the initial lotteries. In the case of early-phase conceptual de-

sign, the range of values might not be fully known or could change during the design

process. Re-running lotteries to create expanded risk functions thus would quickly be-

come burdensome to the practitioner. Further, in cases where utility risk functions

are developed based upon client or customer risk appetites, conducting multiple lottery

sessions is impractical. Finally, as hinted at in Pennings and Smidts’ research [77], lot-

teries do not closely match what individuals believe they will do. However, actions of

individuals more closely align to the predictions of lottery methods than to self-reported

methods. This can be interpreted as a disconnect between what individuals aspire to

do and what they actually do. Utility risk functions generated by alternative methods

could potentially provide new insights for practitioners that will allow decisions to be
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made based upon aspirations rather than upon past performance, as is the case with

lotteries.

In summary, several methods exist and are in use in the risk-based design approach

to determine engineering risk, manage identified risks, and make decisions based upon

that risk. However, these methods approach risk from an expected value choice per-

spective where the decision-makers and stakeholders are expected to be risk neutral.

Utility functions which account for risk attitude have been used in the DBD framework;

however, these functions have generally been developed for consumer products, where

there is a trade-off between product features, price and demand, and not risk-based

design applications. While utility risk functions can be useful for risk-based design ap-

plications, they are not satisfactory for early-phase conceptual design problems. As has

been shown with the DOSPERT and E-DOSPERT tests, people can be risk-averse, neu-

tral, or tolerant. Therefore, a method is needed that can support decision-making for

different risk appetites within the risk-based design paradigm. Psychometric risk atti-

tude test-generated utility risk functions hold promise for use in early-phase conceptual

system design.

6.4 Methodology

Risk-based design methods are used to make decisions about risk in system design. Risk

analysis tools such as FMEA and FTA are commonly used to evaluate system safety

and reduce the likelihood of failure. The risk-based design methods take an expected

value approach toward all engineering risk domains. However, design stakeholders often

have domain-specific risk attitudes that are not risk neutral. The authors propose a

novel method to determine the true value of risk decisions using utility theory and the
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E-DOSPERT risk appetite research. This method translates engineering risk method

data into utility functions, the line along which a value can be translated into a utility

on a two-dimensional plot, using the single criterion DBD approach.

To show how risk appetite can be ignored in standard utility calculations, the risks

in Equations 6.1 and 6.2 are equal in the context of risk-based design. In Equation

6.1, a 1% chance exists that a risk costing $10,000 to return the system to a nominal

operating state will occur while in Equation 6.2, there is a 0.1% chance of realizing a

risk that costs $100,000 in order to return the system to a nominal state. Equation 6.2

represents a case in which additional system complexity has been added to the base

design of Equation 6.1, which has lowered the probability of losing system functionality

but has increased the repair cost in the event of a fault. Both risks have an expected

value of -$100. Therefore, a decision-maker using risk-based design would have no

guidance in choosing between the two designs. The designs are of equal value using the

expected value approach.

R1 = 0.99(0) + 0.01(−$10,000) = −$100 (6.1)

R2 = 0.999(0) + 0.001(−$100,000) = −$100 (6.2)

In contrast, taking into account a risk appetite can change the resulting valuation. Risk-

based design instructs decision-makers that the choice between the risk in Equation

6.1 and the risk in Equation 6.2 does not matter because both outcomes have the

same expected value. However, a risk-averse decision-maker will choose the design in

Equation 6.2 in order to have more certainty about the likelihood of occurrence of

the risk. A risk-tolerant decision-maker is not as concerned with certainty and will
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choose the design in Equation 6.1 due to the lower financial consequence. The example

in Equations 6.1 and 6.2 has a clear choice outcome for risk-averse and risk-tolerant

decision-makers.

Equations 6.1 and 6.2 are of the form Rn = B +Am +Am+1 + . . . +Am+x where B =

probability of benefit × outcome of benefit and Am+x = probability of riskm+x× outcome

of riskm+x. The benefit and risk probabilities all sum to 100%. This research is only

interested in risks and their costs. Therefore all benefits are considered to be identical

between risk choices, i.e., the full system benefit is realized when the system is not in a

fault state and is equal among all design variants. For the purposes of this paper, the

outcome of the benefit is taken to always be zero.

While the example in Equations 6.1 and 6.2 has a clear choice outcome for risk-averse

and risk-tolerant decision-makers, the design choice presented in Equations 6.3 and 6.4

is less clear for decision-makers that are not risk neutral. Rationalizing choosing the

design characterized by Equation 6.3 is impossible under risk-based design. However,

the risk-tolerant decision-maker might still choose the design with a larger negative

expected value because she is more concerned with the lower financial consequence

than the certainty of the outcome.

R1 = 0.99(0) + 0.01(−$15,000) = −$150 (6.3)

R2 = 0.999(0) + 0.001(−$100,000) = −$100 (6.4)

The risk-tolerant decision-maker’s higher intrinsic value for the riskier decision in

this example can be examined through the lens of utility theory. Figures 6.2, 6.3,

and 6.4 demonstrate how risk attitude can affect the utility of a value distribution.
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Figure 6.2 shows that for a Normal distribution of outcomes, a risk-tolerant person’s

utility distribution will shift to be more heavily skewed toward higher value outcomes.

Utility distributions for risk-averse individuals will skew more heavily toward lower

value outcomes, as can be seen in Figure 6.3. The risk neutral state, shown in Figure

6.4, does not weight outcomes in either direction along the utility axis.

Utility functions derived from discrete outcome distributions can also be affected

by risk attitudes. The utility for a system feature with two potential discrete outcomes

takes the form of Equation 6.5 where u(s) represents the system utility, p0 is the

probability of the first outcome, u(xH) is the utility of the first outcome, (1−p0) is the

probability of the second outcome, and u(xL) is the utility of the second outcome.

u(s) = p0 × u(xH) + (1 − p0) × u(xL) (6.5)

To explicitly show how taking risk appetite into account can change resulting val-

uation, a generic utility problem where risk is represented as a dollar figure is shown

in Equation 6.6. Figure 6.5, developed via a series of lotteries, where the minimum

value is $250 and maximum is $1,050, provides a risk-averse quadratic utility function.

As was discussed previously in Section 6.3.5, while lottery-generated risk functions are

appropriate for many situations, the authors postulate that they are not appropriate

for early-phase conceptual complex system design.

u(s) = 0.4 × u($900) + 0.6 × u($400) (6.6)

Determining the utility of each potential outcome is demonstrated in Equation 6.7

where the utility of $900 is found to be 0.91 via inspection of the utility function, as

shown in Figure 6.5, and the utility of $400 is found to be 0.35 from the risk utility
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Figure 6.5: Risk-Averse Quadratic Utility Function Developed Using the Lottery
Method. The value of the potential outcomes is translated via the risk averse risk
function to the utility domain. The two utilities are then combined using the generic
Equation 6.5, as applied in Equation 6.7, and translated back through the risk averse
utility function to find the risk-adjusted value of $540. Using the risk neutral utility
function, a value of $600 is found.
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function as demonstrated in Figure 6.5. These utilities are then multiplied by their

respective probabilities and summed together to find the overall system utility, u(s) =

0.57, for a risk-averse decision-maker. Reversing the procedure, a utility of 0.57 produces

a risk-adjusted value of u−1 = $540 while a neutral utility function results in a risk-

adjusted value of u−1 = $600. This clearly shows that using a risk appetite function

in a utility function results in a different valuation of the system than would be found

without using a risk appetite function.

u(s) = 0.4 × (0.91) + 0.6 × (0.35) = 0.57 (6.7)

As previously discussed, while risk functions generated using lottery methods are

useful in many situations, early-phase conceptual design can benefit from an alternative

method. The authors propose using risk functions generated from E-DOSPERT test re-

sults. Based upon the findings of Van Bossuyt et. al. [85], the 25 question E-DOSPERT

test provides sufficient statistical reliability to determine general engineering risk tol-

erance or risk aversion. The mean of the 25 question instrument is proposed by the

authors to be the most appropriate metric for use with risk function development. The

E-DOSPERT makes use of a 1-5 Likert Scale with 1 corresponding to “Very Unlikely”

and 5 corresponding to “Very Likely.” A score of 3 corresponds to the neutral answer

of “Not Sure.” Using the 25 risk tolerant questions in the E-DOSPERT test, a mean

score of 3 indicates a neutral risk appetite, a mean score of 5 indicates extreme risk

tolerance, and a mean score of 1 indicates an extremely averse risk appetite. An indi-

vidual engineer, customer, or stakeholder’s E-DOSPERT test result is used to generate

utility functions. Note that multiple E-DOSPERT test results cannot be combined due

to Arrow’s Impossibility Theorem [141].
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In this research, the authors suggest that an exponential function is an appropriate

utility risk function to use with psychometric risk scale test results. The function

may be either of the monotonically increasing or decreasing exponential type [88]. An

exponential function was chosen over other potential functions because it is believed

that practitioners will be either constantly risk averse or constantly risk tolerant during

the early phases of conceptual system design. In one study where a risk survey was

compared to the lottery method, it was found that risk functions generated by the

lottery method were exponential in nature. Further, there was reasonable correlation

between the risk survey results and lottery method results [77]. Research is ongoing in

this area to verify that this holds true for the E-DOSPERT.

The choice of an exponential function also allows the direct use of E-DOSPERT

test results in the creation of a risk function [76]. The monotonically decreasing ex-

ponential utility function developed by Kirkwood [88] shown in Equation 6.8 is used

throughout the rest of this paper. U(V ) represents utility of the potential value(s).

CE(V ) represents the risk-adjusted value of the potential values of interest, otherwise

known as the certainty equivalent. VMax is the maximum possible value. It should

be noted that VMax need not be the maximum value of the range of potential values

of interest but can be a larger number than the maximum potential value of interest.

This property is useful in situations where a larger maximum value is possible than

the set of potential values currently being investigated or when multiple sets of poten-

tial values, representing multiple sets of outcomes of a decision choice, span different

numerical ranges. Similarly, VMin is the minimum possible value which need only be

smaller than or equal to the smallest potential value of interest. Note that VMin can

either be a positive or negative number. RT /A is the risk tolerance/aversion coefficient

of the utility function. In order to convert an E-DOSPERT mean score (EDSMean)
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to an RT /A value, Equation 6.9 was developed by the authors based upon the work of

Kirkwood [88], Howard [142], and McNamee and Celona [143]. In Equation 6.9, RSF

is a scaling factor. Several different rules of thumb based upon financial measures are

available to determine RSF such as finding a sufficient RSF that RT /A will be roughly

%6 of net sales, a 100-150% of net income, and about 1
6 of equity [142]. These rules

of thumb have been found useful in the oil and chemical industries [142]. Additional

suggestions are given by Kirkwood [88] and McNamee and Celona [143]. It is important

that the practitioner select an RSF that is appropriate to their industry, company, and

the specific analysis being performed. It is beyond the scope of this paper to provide

strict guidance on domain and situation-appropriate RSF values. It is also beyond the

scope of this paper to judge if practitioner level of expertise can influence the selection

of appropriate rules of thumb. For the examples and illustrations presented in this

paper, RSF = 60 will be used to clearly demonstrate the novel method to determine

true value of risk decisions using utility theory and the E-DOSPERT test.

U(V ) = e−
VMax−V

R
−1

e−
VMax−VMin

R
−1

(6.8)

RT /A = VMax − VMin

1000
∗ RSF

EDSMean − 3
(6.9)

The inverse of Equation 6.8, shown in Equation 6.10, is used to calculate the cer-

tainty equivalent. In the special case of an E-DOSPERT test result where the test-taker

is found to have a perfectly risk neutral risk appetite, Equations 6.11 and 6.12 are used

to generate the risk function and find the risk-adjusted value of the potential values.

Examples of monotonically increasing exponential utility functions can be found in

Kirkwood [88]. Other risk utility functions of potential interest to the practitioner are
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Figure 6.6: Monotonically Decreasing Exponential Risk Utility Functions Developed
Using Equation 6.8 where EDSMean = 2.8,2.9,3.0,3.1,3.2, RSF = 60, VMax = 1000, and
VMin = 0.

available in Keeney and Rafta [76]. A series of risk functions generated in MATLAB

using Equation 6.8 from E-DOSPERT mean scores of EDSMean = 2.8,2.9,3.0,3.1,3.2,

VMax = 1000, VMin = 0, and RSF = 60 is shown in Figure 6.6.

CE(V ) = RT /A ∗ log(−U(V ) ∗ (e
VMax
RT /A − e

VMin
RT /A − e

VMax
RT /A ) (6.10)

U(V ) = VMax − V

VMax − VMin
(6.11)

CE(V ) = U(V ) ∗ (VMin − VMax) + VMax (6.12)

In order for engineering risk methods to make use of risk appetite functions in

utility theory, risk metrics generated by the various engineering risk methods must

be translated into an easily comparable unit of measure. The authors advocate using
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consequential cost as it is a convenient and easily understood unit of measure. Therefore,

in order to use this risk appetite utility method, both consequential cost and probability

must be determinable for the risks identified by engineering risk methods. Standard

engineering tools used in the design process often contain the necessary risk information,

but require translation into the appropriate probability and cost metrics. For example,

translating risk information from an FMEA into probability and consequential cost is

relatively straightforward. Probability can be derived from the occurrence metric. In

the case of a purely linear occurrence metric scale, the percent chance of failure can

be found by multiplying occurrence, Occ, by an appropriate factor, Ocf . When the

occurrence scale is not linear, an appropriate function can be used to translate the

occurrence metric into a probability value. In the case of a linear occurrence metric

scale, Ocf should be determined by dividing 100 by the result of subtracting the low

(OccMin) end of the occurrence metric scale from the high (OccMax) of the scale, as

shown in Equation 6.13. Probability, P0, can then be determined by Equation 6.14

where P1→n represents the complete set of probabilities under consideration.

Ocf =
100

OccMax −OccMin
(6.13)

P0 = 1 −
Occ∗Ocf

100

∑P1→n
(6.14)

Consequential cost, representing value, can be determined in a variety of manners.

The authors suggest that consequential cost should be determined by the cost to return

the system to a nominal state if the risk occurs. In the event that consequential cost

cannot be directly determined, a summation of the severity and detection metrics can

be used as an analogue metric to consequential cost.
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Table 6.1 provides a simplified FMEA for a complex system design with three iden-

tified risks and the consequential cost of each risk. Decision-Maker A has been tasked

with deciding which risk is the most important to fix. Decision-Maker A has a risk-

averse appetite where EDSMean = 2.88. The generalized form of Equation 6.5 is used

in this example by setting p0 equal to Equation 6.14 where OccMax = 10, OccMin = 0,

Ocf = 0.1, XHigh = 0, XLow = V (Rn), VMin = $250, VMax = $1,050, and RSF = 20.

Using a risk-averse utility function generated from Equation 6.8 and Equation 6.5 ,the

risk-averse Decision-Maker A discovers that the most desirable certainty equivalent

choice is CE(R1) = $0.8909, while CE(R2) = $1.1292, and CE(R3) = $2.9184. There-

fore, the risk-averse decision is to mitigate the R1 risk as it has the lowest certainty

equivalent value.

Table 6.1: Simplified FMEA Example for Decision-Maker A.
Risk Function Severity Occurrence Detection RPN Consequential Cost
R1 Funct 1 7 3 4 84 $450
R2 Funct 2 4 5 8 160 $300
R3 Funct 3 2 8 3 48 $650

This method can also be used to compare between different designs. For instance,

using Table 6.1 as Design 1 and Table 6.2 as Design 2, a risk-tolerant person, Decision-

Maker B, with an E-DOSPERT mean score of EDSMean = 3.15 can determine which

design is more preferred. Using the monotonically decreasing exponential risk function

of Equation 6.8 with VMax = $1,000, VMin = $0, OccMax = 10, OccMin = 0, Ocf = 0.1,

RSF = 60, XH = 0, and XL = V (Rn) the utilities of risks, probabilities, system utilities,

and risk-adjusted values are found as shown in Table 6.3. Equation 6.15 is then used

to find the overall certainty equivalents (CE) of the two designs where CEn(Rn) is

the risk-adjusted value of the individual identified risk, Rn. Each of the risks identified
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in the FMEA presented in Tables 6.1 and 6.2 is an independent risk, and thus the

total risk is simply the sum of the individual risks. Equation 6.15 is used rather than

Equation 6.10 because each of the risks identified in the FMEA presented in Tables

6.1 and 6.2 is an independent risk. Applying Equations 6.8 and 6.15 shows that the

risk-tolerant Decision-Maker B with an EDSMean = 3.15 would choose Design 1 as it

has the smallest certainty equivalent. Decision-Maker C who has an expected value risk

neutral decision making criteria would find Design 1 to have CE = $8.05 and Design

2 to have CE = $5.5000, and thus would choose Design 2 as it has a lower certainty

equivalent than Design 1.

CE(RTotal) = CE1(R1) + . . . +CEn(Rn) (6.15)

Table 6.2: Simplified FMEA for Design 2 for Decision-Maker B.
Risk Function Severity Occurrence Detection RPN Consequential Cost
R1 Funct 1 5 4 4 80 $400
R2 Funct 2 6 5 7 210 $700
R3 Funct 3 3 2 3 18 $200

6.5 Implementation and Testing

An illustrative case study is developed in the following section. The SuperNova /Ac-

celeration Probe (SNAP) mission trade study [144] performed by Team-X provides the

bulk of the background information necessary for this case study. Additional mate-

rial comes from the Space Mission Analysis and Design book by Wertz and Larson

[90]. Costing and risk data are simulated for illustrative purposes only and should not

be used beyond this case study. The SNAP mission’s purpose is inconsequential in
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the demonstration of the method presented in this paper. Further information on the

SNAP mission can be found in [144] for those interested.

The SNAP mission was intended to investigate the nature and origin of “Dark En-

ergy” acceleration and expansion of the universe. The experiment was designed to

precisely measure the history of the universe’s expansion from the present day back to

approximately 10 billion years in the past. Plans called for a satellite in a high earth

orbit on a four year mission to study the brightness of la type supernovae and the

redshift of la type supernova host galaxies [144].

Several risks were identified in the SNAP mission report. This paper makes use of

and expands upon potential risks in the power and attitude control subsystems. Table

6.4 details several risks that will be used in the remainder of this paper.

During the course of the CDC trade study session, the risks outlined in Table 6.4

were identified. Risks R1 and R2 are potential threats to mission success. Risks R31−2

and R4 are threats to the level of science data that can be returned from the spacecraft

but will not end the mission completely. The R31 and R32 risks identify the same risk

and propose two different solutions. R32 also presents the same solution as the solution

for R4.

In order for the SNAP mission proposal to be considered for further development

funding, it must meet a specific cost cap. In this fictitious example, the mission proposal

is $40M away from reaching the cost cap. Not all of the identified risks can be mitigated

under this cost cap. Based upon the RPNs of the four identified risks, R2 should be

addressed first. This however would not leave enough funds to address R1, the next

largest risk. Additionally, the customer believes that severity of R1 is overstated and

wants to take a more risk-tolerant stance on R1 while addressing some of the science

data concerns of R3 and R4 within the limited resources available.
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To help make risk mitigation decisions, the customer, represented by a single person,

was given the E-DOSPERT test. The result, EDSMean = 3.17, was used with the

monotonically decreasing exponential risk utility function in Equation 6.8 where VMax =

$120M , VMin = $0, XH = 0, XL = V (Rn), OccMax = 10, OccMin = 0, Ocf = 0.1, and

RSF = 60. The consequential cost was used as potential outcome values while the

occurrence values were used to determine probability of occurrence. Table 6.5 shows

the resulting probability, and utility data. From this data, decision-makers can see

that risks R2 and R31 are the most preferred under a risk-tolerant decision process and

will cost less than $40M. A risk-neutral approach would have chosen risks R1 and R2.

The two most preferred risks to mitigate also satisfy some of the questions surrounding

mission success and science data return.

After a mission has been conceptually developed within Team-X, it is often placed

into competition with other competing conceptual spacecraft mission designs for fur-

ther funding. In this case study, the SNAP mission was put into competition against

two other missions for funding after mitigating the risks identified above. Table 6.6

summarizes the relevant SNAP risk data and risk data for the other competing mission

concepts. It is assumed that each mission has already mitigated as many risks as was

possible under the budget cap.

The decision-maker who will choose which mission concept is awarded funding to

continue development has decided to use a monotonically decreasing exponential risk

utility function as shown in Equation 6.8 where VMax = $60M , VMin = $0, OccMax =

10, OccMin = 0, Ocf = 10, and RSF = 20. The decision-maker’s E-DOSPERT test

result is EDS = 3.10, making her risk-tolerant. Equation 6.10 is used to determine

the certainty equivalent, CE, of each design. Table 6.7 shows the utility, probability,

certainty equivalent.
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Table 6.6: Simplified FMEA for the SNAP Mission and Other Competing Missions.
SNAP Mission

Risk Function Sev. Occ. Det. RPN Cons. Cost
R1SNAP

Funct 1 3 4 4 112 $30M
R4SNAP

Funct 4 2 5 4 80 $25M
Competing Mission A

Risk Function Sev. Occ. Det. RPN Cons. Cost
R1A Funct 1 4 5 3 84 $25M
R2A Funct 2 3 2 8 48 $20M
R3A Funct 3 5 3 4 60 $35M

Competing Mission B
Risk Function Sev. Occ. Det. RPN Cons. Cost
R1B Funct 1 6 1 4 72 $40M
R2B Funct 2 8 3 5 120 $30M

Table 6.7: Utility and Probability Data for Design 1 and Design 2 Risks.
SNAP Mission

Risk Utility of
Risk(u(XL))

Probability
(1-P0)

System Utility
(U(s))

Certainty Equivalent
(CE(Rn)

R1SNAP
0.0018 0.0030 0.9988 0.1542

R2SNAP
0.0014 0.0020 0.0014 0.0780

Risk-Adjusted Value (CE(Rtotal)) Total: $0.2322M

Competing Mission A
Risk Utility of

Risk(u(XL))
Probability
(1-P0)

System Utility
(U(s))

Certainty Equivalent
(CE(Rn)

R1A 0.0035 0.0050 0.9985 0.1945
R2A 0.0016 0.0020 0.9996 0.0568
R3A 0.0015 0.0030 0.9985 0.1984

Risk-Adjusted Value (CE(Rtotal)) Total: $0.4497M

Competing Mission B
Risk Utility of

Risk(u(XL))
Probability
(1-P0)

System Utility
(U(s))

Certainty Equivalent
(CE(Rn)

R1B 0.0003 0.0001 0.9993 0.0837
R2B 0.0018 0.0030 0.9988 0.1542

Risk-Adjusted Value (CE(Rtotal)) Total: $0.2379M
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By using the risk appetite utility function method, the decision-makers see that the

SNAP mission is the most preferred design in the case of risk tolerance. Therefore,

assuming all other mission selection criteria are equal, the SNAP mission would be the

preferred mission to receive continued funding. This selection would not have been

made under a risk neutral, expected value decision making process and instead would

have chosen Competing Mission A due to the lower certainty equivalent. In the case

of a neutral risk appetite, CE(SNAP ) = $0.1400, CE(MissionA) = $0.2700, and

CE(MissionB) = $0.1300. A similar process to this would then be repeated at the

next level of mission selection after further mission concept development.

6.6 Conclusion and Future Work

As seen in the case study, the risk appetite utility function method allows engineering

risk methods which are in the expected value domain to be translated into an appro-

priate risk appetite domain for a specific enterprise or decision-maker. Viewing the risk

information through the lens of risk appetite provides a decision-maker with a new,

numerically based approach to select and justify selection of the most important risks

to address under constrained resources. Rather than using “gut feeling” to try and ex-

plain risk decisions, this method gives stakeholders a way to rationalize their risk-based

decisions.

Several limitations are present in the method. This method is only designed for indi-

vidual stakeholders or enterprise-level usage where one consistent risk appetite function

can be generated. Additional methods, such as the Accord decision support software

package [145], could be useful in combining the inputs of multiple stakeholders into a

unified risk appetite utility function.
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Further expansion of this methodology will examine the benefit side of Equation

6.5 which can add an expected benefit if the risk outcome is not realized. This area of

research could be especially fruitful for comparing multiple risks against one another for

risk-tolerant enterprises. Large risks can have associated large benefits. This method

does not currently account for the potential large return for taking a large risk.

Addition of a post-risk-realization cost to return the system to a nominal state

is a promising area of future development for this method. Seven potential options

for returning the system to a nominal state exist including repair, reconfiguration, re-

placement, redundancy, reconditioning, recovery, and resetting. Depending upon which

option is chosen to return a system to its nominal state, the portion of Equation 6.5

that represents the beneficial outcome could change. This research only focuses upon

the portion of Equation 6.5 that examines the costs of a risk. Additionally, future risk

realizations could be limited from the initial risk event due to the option chosen to re-

turn the system to a nominal state. The definition of a nominal system state also could

change to some form of a reduced system capacity but a capacity that still provides

some value to the enterprise. This is exemplified with subsystems failures on satellites

such as the failure of the high gain antenna and the tape recorder remote repair on the

Galileo spacecraft [146].

Testing of this method should be conducted to determine user satisfaction levels

between utility risk functions generated with lottery methods and with E-DOSPERT

test results. For instance, surveys of user groups such as those conducted in [82] could

be conducted. Choice determinations made with the help of risk functions generated

from the E-DOSPERT test could be compared against choices made by individual re-

spondents on risk decisions where a risk-averse person would decide differently than a

risk-tolerant person. This would verify that risk appetite affects engineering risk deci-
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sions. The same population of respondents would also be provided data from the risk

appetite utility function method using risk functions generated with lotteries to make

risk decisions. In future work, this method will be tested and verified at Boeing in

the Commercial Airplane division with production-level design engineers who work in

or with a Team-X-like setting or equivalent under the auspices of a National Science

Foundation (NSF) grant. This will include further testing and exploration of the cre-

ation of the scaling factor, RSF with the intent of developing rules of thumb specific to

the aerospace industry. Research is ongoing to investigate “gaming” the E-DOSPERT

test which could adversely impact the method presented in this paper.

The risk appetite utility function method presented in this paper translates engi-

neering risk data from the expected value domain into a risk appetite corrected domain

using risk functions derived from E-DOSPERT test results using a single criterion de-

cision based design approach. The resulting utility functions are aspirational in nature

which is a departure from the predictive utility functions created using lottery methods.

The method presented in this paper allows decisions to be made under risk-tolerant or

risk-averse decision-making conditions rather than forcing decisions to be made using

an expected value approach, as with engineering risk methods. Risk-averse industries

such as nuclear power and aerospace will choose to view risk data through a risk-averse

lens which emphasizes risks that are more certain. Risk-tolerant enterprises could have

the appetite to accept riskier design choices that might result in larger payoffs if the

risks are not realized.

The method has been shown to change risk-based decisions in certain situations

where a risk-averse or risk-tolerant decision-maker would likely choose differently than

the expected value approach suggests. As the E-DOSPERT test is further refined, the

risk appetite utility function method could be more useful. Extensions of the method



171

to examining the benefit side of the risk utility equation will provide further benefit

to the practitioner. The risk appetite utility function method is a promising area of

further research and practical application.
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Chapter 7 –Framework Example

This chapter presents several examples of the risk-informed decision making framework.

The examples are implemented in a combination of MATLAB, Excel, and ModelCenter.

First a simple single subsystem model is examined in an automated trade study and

results are analyzed. Then a model that includes four subsystems is examined. Results

are presented and analyzed.

Specifically, a simplified spacecraft model comprising of four subsystems was derived

from Wertz and Larson [90] and implemented in both Excel and MATLAB. Details of

the model are presented in [82]. A brief overview and additional relevant subsystem

information is presented in Section 7.3. The model was then brought into ModelCenter

and integrated with E-DOSPERT risk curve algorithms developed in [89] and presented

in Chapter 6. (Note: Portions of this chapter are being prepared for submission as part

of a journal article after this dissertation has been completed.)

7.1 Framework Deployment

Figure 7.1 shows a typical trade study process conducted in a CDC. After initial

design parameters are assigned, individual subsystem chairs make design decisions and

work with other subsystem chairs in order to trade system-level parameters such as

mass, cost, power, and risk [83]. The resulting design is then examined based upon

the system-level parameters and the ability of the design to achieve mission goals. If

the design is found satisfactory by the trade study leader or customer, the trade study
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session is ended and the design is finalized. Otherwise, additional direction is given by

the trade study leader or customer and the subsystem engineers iterate on subsystem

design choices and intra-subsystem system-level parameter trading.

Figure 7.1: Typical Trade Study Process

The risk-informed decision making framework integrates into the trade study process

shown in Figure 7.1 throughout the entire process. In the initial step of assigning system-

level parameters to individual subsystems, the trade study leader specifies acceptable
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system-level and, when desired or appropriate, subsystem-level-specific risk parameters.

The risk-informed decision making framework is used in assigning risk parameters at the

system and subsystem level. In the next step where subsystem engineers make design

decisions and trade with other subsystem engineers, the risk-informed decision making

framework is used to provide risk-based decision-making support and to aid in risk

trading. The E-DOSPERT mean score (EDSMean) derived from Chapter 5 provides

a critical piece of information necessary to create utility risk curves, as was done in

Chapter 6. Risk trading can then occur, as detailed in Chapter 4. It is important to note

that there are two different ways of using the risk-informed decision making framework.

One method allows each subsystem engineer to have individual risk appetites, shown

in Section 7.7.1, while the other method imposes a system-level risk appetite upon the

entire trade study, detailed in Section 7.7.2.

During the design decision and trading step of Figure 7.1, the subsystem engineers

use the framework to analyze the risks present based upon either their own personal

EDSMean values or a system-level EDSMean value, and make decisions regarding risk

mitigation and system-level parameter trading, including risk metrics. The resulting

system design and system parameter values are then examined at the system level. At

this stage, the framework is used to bring together the subsystem risk metrics on the

system level for analysis by the trade study leader or customer, as shown in Chapter 4.

Depending upon the style of risk-informed decision making framework implementation,

methods described in Chapters 5 and 6 are used to help inform the system-level decision-

makers’ risk-informed decision making process.

If the trade study leader and customer are satisfied with the design analyzed in the

preceding step, the design is then finalized and sent on to the next step of the conceptual

design process for the complex system under development. Otherwise, the trade study
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leader provides direction and guidance to the subsystem engineers and the system design

is iterated upon using the preceding steps. As with the first iteration of the trade study

process, the risk-informed decision making framework is used throughout the subsequent

iterations of the trade study process.

During the design finalization process, key decision rationale is captured and recorded.

This important step helps to inform engineers working on the later phases of the con-

ceptual and physical complex system design process of the reasons that certain design

decisions were made. The risk-informed decision making framework provides a wealth

of information to engineers further along in the design process. Specifically, the infor-

mation captured from the portions of the framework contained in Chapters 4, 5, and

6 provide the quantitative rationale behind risk-informed decisions that would either

have not been considered or would have been an afterthought after a trade study design

was finalized, or would have been justified based upon gut feeling or expert judgment.

The risk-informed decision making framework gives a quantitative structure in which

to determine risk appetites, make risk-informed decisions based upon risk appetites,

and trade risk as a system-level parameter during trade studies. The following sections

detail specific aspects of the framework and provide examples of the framework in use.

7.2 The Risk-Informed Decision Making Framework in a CDC En-

vironment

This section presents two methods of using the risk-informed decision making frame-

work with individual subsystems in a CDC environment. The methods presented here

are specifically tailored to evaluation of risk using FMEA but can be expanded to
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be used with any other common risk method, as reviewed in Section 2.5. The first

method provides the user with the opportunity to select between three different design

alternatives based partially upon risk information and risk utility curves created with

E-DOSPERT information. The second method provides the user with a method of

selecting which risks to mitigate from a list of risks with the decision support of risk

information and risk utility curves. Many additional permutations and expansions of

the two presented methods of using an FMEA in the risk-informed decision making

framework are possible. The methods presented here are not exhaustive but rather

representative of potential user interfaces.

7.2.1 Choosing Between Design Alternatives

The first FMEA user interface method, shown in Figure 7.2, presents the user with

three different potential design alternative FMEAs. The example shown in Figure 7.2

is drawn from the Data Handling subsystem, a component-based model that contains

nine potential design alternatives, developed in Van Bossuyt and Tumer [82], presented

in Section 4.5.2, and used in subsequent sections of this chapter. Design Alternative

1 represents a simple, one unit data handling subsystem. Design Alternative 2 rep-

resents a two unit, typical data handling subsystem. Design Alternative 3 represents

a complex, integrated data handling subsystem. Further information about the pos-

sible subsystem combinations is available in Table 4.1. The consequential costs were

developed as part of Section 7.3 and are presented fully in that section. The certainty

equivalents were determined for a decision-maker with an EDSMean = 3.1, VMax = 4,

VMin = 0, a monotonically decreasing exponential risk curve, and RSF = 60.
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From Figure 7.2, it can be seen that the user selected Design Alternative 2 in the

“Alternative Selection” box on the center right of the figure. The user is purposefully

allowed to select any of the three design alternatives regardless of the consequential

cost ranking. This implementation of the risk-informed decision making framework

supports risk-informed decision making; it does not impose a decision upon the user.

While Design Alternative 2 might be the most preferred design based upon risk, other

criteria might be more important or more urgent in the decision maker’s mind. Thus

the decision maker is allowed to choose which design is preferred based upon the risk

information presented in Figure 7.2 as well as other important metrics.

7.2.2 Choosing Which Risks to Mitigate

The second user interface method, shown in Figure 7.3, presents the user with an FMEA

that includes certainty equivalent information for each of the identified risks. The user

is also presented with consequential cost information and other information relevant to

the amount of money available to support risk mitigation. The risk mitigation process

works by the user selecting which risks to mitigate while staying within the cost cap.

The user is free to select between different risks to mitigate. Risk-informed decision

support is provided by the risk-informed decision making framework in the form of

the certainty equivalent values and the consequential cost data. The user is free to

consider the risk information provided by the risk-informed decision making framework

in addition to any other information that the user believes to be pertinent. The data

presented in Figure 7.3 is derived from Design Alternative 1 presented in Section 7.2.1.

The user in Figure 7.3 selected the two risks with the highest certainty equivalent

that could be afforded together. The user’s thought process was to mitigate the largest
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certainty equivalent risk first and then mitigate the next largest risk that could be

afforded with the remaining mitigation money. Many other decision methods could

be used to make decisions based upon the figure including bringing in other outside

information, weighting decision metrics, trading system-level parameters with other

subsystems in order to achieve a higher level of utility, as partially defined by risk, for

the subsystem, etc.

The two different user interfaces presented here to interact with FMEA risk data

under the auspices of the risk-informed decision making process are not an exhaustive

presentation of all possible user interfaces. These two examples are a starting point

for the practitioner to create interfaces that are appropriate for the particular CDC in

which the practitioner works. This type of interface can be adapted to work with the

many different risk methods reviewed in Section 2.5. The methods presented above can

be implemented into algorithms to automate much of the process for automated trade

studies. The following sections present automated trade study case studies based upon

the simplified spacecraft model presented in Chapter 4.

7.3 Subsystem Development and Expansion

In order to demonstrate the risk-informed decision making framework, a simplified

spacecraft model was developed from Wertz and Larson [90] using Microsoft Excel and

MATLAB for typical satellite missions. Four representative subsystems were chosen to

represent the spacecraft including Communication, Data Handling, Attitude Control,

and Power. Each subsystem model was programmed to have two inputs and three func-

tion or component-driven outputs. The inputs were user-driven in Excel and automated

in MATLAB. The inputs were specific to each subsystem.
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Table 7.1: Consequential Cost Subsystems Data
Consequential Cost

FMEA Entry # Data Attitude Comms. Power
# 1 0.9 0.7 0.75 0.1
# 2 0.4 0.3 0.4 0.4
# 3 0.75 0.5 0.4 0.3
# 4 0.6 0.9 0.3 0.2
# 5 0.6 0.2 0.9 0.15
# 6 0.6 0.9 0.8 0.6
# 7 0.8 0.19 0.75 0.35
# 8 0.2 0.4 0.3 0.425
# 9 0.25 0.25 0.2 0.3
# 10 0.5 0.7 0.2 0.6

To replicate actual CDC trade studies, three outputs were chosen to represent space-

craft output data from all of the subsystems including Subsystem Power Requirements,

Subsystem Mass, and Subsystem Cost. Additionally, all formulas and other numeric

information was altered to only generally correspond to real-world spacecraft systems.

This is intentional. No part of the models used in this dissertation are meant for indus-

trial CDC environments and are only suited to be used in research.

Subsystem model information is contained in Van Bossuyt and Tumer [82] and

Sections 4.5.2 and 4.5.3. Additionally, this research makes use of certainty equivalent

values. Table 7.1 lists values for the corresponding FMEA entries.

The simplified spacecraft models developed from Wertz and Larson [90] outlined

in this section and presented elsewhere were used to simulate the conceptual space-

craft design trade study process. All unit information was intentionally expunged from

the models. Constants used in the functional equations and output numbers from

component models were intentionally altered to keep from closely resembling any real
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conceptual spacecraft designs. The subsystem models described here are the basis of

the experiments described below.

7.4 ModelCenter Implementation

The models outlined in Section 7.3, detailed in Sections 4.5.2 and 4.5.3, and in Van

Bossuyt and Tumer [82] were implemented in Phoenix Integration’s ModelCenter [147].

For the purposes of this chapter, the models were integrated into a single ModelCenter

instance rather than separate ModelCenter instances as was done in Van Bossuyt and

Tumer [82].

Model integration was achieved via the built-in ModelCenter MATLAB plug-in. The

choice to move away from Excel where the models had originally been implemented in

Van Bossuyt and Tumer [82] and used in Van Bossuyt et. al. [83] and Chapter 4 was

made in order to increase computational efficiency and data collection efficacy. Beyond

the implementation software package, nothing has been changed between the models

previous developed and used in Excel and the models implemented in MATLAB save

for the addition of consequential cost values shown in Table 7.1.

7.5 Single Model Trade Study Using the Risk-Informed Decision

Making Framework

A single subsystem model was initially implemented and a trade study was performed

in order to highlight the benefits of the risk-informed decision making framework. The

Data Handling subsystem was selected at random out of the four modeled spacecraft

subsystems. Figure 7.4 portrays a graphical representation of the ModelCenter anal-
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ysis view showing the various models used in implementing the risk-informed decision

making framework and Data Handling subsystem model.

A trade study was performed using the single subsystem model. The E-DOSPERT

test statistic (EDSMean) used in Equations 6.8 and 6.9 and the subsystem model inputs

were allowed to vary in a trade space exploration consisting of approximately 3000 data

points. EDSMean ranged from 2.5 to 3.5 while the two subsystem inputs varied between

the three discrete choices each of the inputs were configured to accept. VMax was set

equal to 4 while VMin = 0, and RSF = 60.

Figure 7.5 shows a plot of the nine different subsystem input choice combinations

with EDSMean on the X axis and the subsystem certainty equivalent on the Y axis.

The subsystem certainty equivalent was found after risks were mitigated as outlined in

Section 6.5 and Van Bossuyt et. al. [89]. The black arrows indicate places where two

choice combinations intersect and cross over one another. This indicates places where

a person with an EDSMean equal to the crossover point value would be indifferent

between the two subsystem input choice combinations. On either side of the crossover

point EDSMean value, a decision-maker with a higher or lower EDSMean value would

make a different design selection as compared to a decision-maker with an EDSMean

value on the other side of the crossover point. This is also replicated in the ordering of

risks by mitigation preference as shown in Section 6.5 and Van Bossuyt et. al. [89].

In summary, there are clear crossover points where the preference between one design

choice and another change based upon the EDSMean value of the decision-maker and

the system certainty equivalence. An interesting investigation to make is the sensitivity

of the various parameters that go into the utility risk curve models as presented in

Chapter 6. The following section provides insight into the sensitivity of this part of the

risk-informed decision making framework.
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Figure 7.4: ModelCenter Analysis View of Data Handling Subsystem Model Integrated
into the Framework
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Figure 7.5: Data Handling Subsystem Model Subsystem Input Choice Combination
Data

7.6 Sensitivity Analysis of Risk Appetite-Generated Utility Curves

A sensitivity analysis of the utility risk curve method based upon the E-DOSPERT sur-

vey statistic EDSMean presented in Chapter 7 was performed. The goal of the analysis

was to determine the sensitivity of the utility risk curve method to changes in EDSMean,

the RSF scaling factor from Equation 6.9 that is sized based upon practitioner expe-

rience and several rules of thumb [142, 88, 143], FMEA occurrence, (Occ), the lowest

point on the utility risk curve (VMin), and the highest point on the utility risk curve

(VMax). Through a sensitivity analysis of a simple model, it was found that EDSMean

contains 41% of the variance while other individual variables contain between 2% and

6%.
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Table 7.2: Sensitivity Analysis Setup Data
Variable Low High
EDSMean 2.5 3.5
Occ Risk 1 1 9
Occ Risk 2 1 9

Cons. Cost Risk 1 10 90
Cons. Cost Risk 2 10 90

VMax 90 100
VMin 0 10
RSF 30 100

A simple model was implemented in MATLAB and brought into ModelCenter. The

model contained two representative FMEA entries including information on consequen-

tial costs. Table 7.2 provides details on the ranges over which EDSMean, Occ, conse-

quential cost, VMax and VMin, and RSF were varied. Constants in the model were the

selection of a monotonically decreasing exponential function and Ocf = 0.1. A sensitiv-

ity analysis was then performed. The system-level certainty equivalent response can be

seen in Figure 7.6. The figure shows that the largest effect on the system-level certainty

equivalent comes from EDSMean at 41%. Higher order effects make up 12% of the

variance, interaction effects between several variables make up between 6 and 10% of

the variance, and consequential cost and VMax make up 6% of the variance each. The

scaling factor, RSF , makes up only 3% of the variance.

From the data presented in Figure 7.6, RSF is shown to have a much smaller effect

on the system-level certainty equivalent value than EDSMean. This demonstrates that

risk appetite has a bigger effect on the results of a design trade study conducted using

the risk-informed decision making framework than other factors such as RSF .
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Figure 7.6: System-level Certainty Equivalent Response
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7.7 Four Model Trade Study Using the Risk-Informed Decision Mak-

ing Framework

The four subsystem models and payload subsystem outlined in Section 7.3 were imple-

mented into ModelCenter using the risk-informed decision making framework as was

done in the single model example in Section 7.5. Two different implementations of the

framework were completed. The implementation detailed in Section 7.7.1 represents a

situation where a CDC is using the risk-informed decision making framework to sup-

port the decisions of each subsystem chair based upon each subsystem chair’s EDSMean

value. The implementation detailed in Section 7.7.2 demonstrates a situation where an

entire CDC is using a key stakeholder’s EDSMean value to aid in decision-making.

Each implementation uses risk as a tradeable parameter as detailed in Chapter 4. The

EDSMean values are representative of values found during the development and testing

of the E-DOSPERT scale as detailed in Chapter 6. Figure 7.7 graphically demonstrates

the ModelCenter analysis view of the implemented four subsystem model simplified

spacecraft.

7.7.1 Individual EDSMean Value Decision-Making

In the case where a CDC does not have a unified EDSMean, the risk-informed decision

making framework can be implemented to support the decisions of each subsystem chair

based upon the individual chairs’ EDSMean values. CDCs such as JPL’s Team-X often

perform an initial allocation of system-level parameters such as cost, mass, and power,

to the subsystems prior to the start of a trade study [148]. The example in this section

took a similar approach where initial cost allocation was performed prior to the start of
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the trade study. EDSMean values were set at either 3.1 or 2.9 for the four subsystems.

These values are representative of typical scores found in the E-DOSPERT research

presented in Chapter 6.

As with Section 7.2.2, each subsystem is initially assigned a specific amount of money

with which to mitigate risks. Two different means of assigning mitigation money are

available including assigning a total amount of money to both the subsystem design and

construction, and risk mitigation; and assigning separate pools of money for subsystem

design and construction, and risk mitigation. The prior method of assigning mitigation

money was used in the example in this section.

Regardless of using individual EDSMean values in automated trade studies or trade

studies performed with people making iterative design decisions, two options are present

for trading risk at the system level. Either risk can be traded between subsystems in its

original risk-neutral form or it can be traded in a global EDSMean-adjusted form. The

prior case is useful for when individual subsystem engineers wish to make risk-informed

decisions based upon their own EDSMean values but there is no one unified EDSMean

presented by the customer or other important stakeholder. The later case is useful for

when subsystem engineers desire to retain the ability to make risk-informed decisions

based upon their own EDSMean values and also trade risk at the system level based

upon a key stakeholder’s EDSMean value.

Figure 7.8 presents the results of a parameter scan of the trade study space of

a weather satellite design problem described in Section 4.5.5. The design preference

parameters within ModelCenter were set to identify the most preferred design by a

combination of minimizing cost, mass, and power while also minimizing average system

RPN and maximum system RPN. The black line indicates the most preferred design

out of the trade study parameter scan design set. After ascertaining the design trade
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space, a design optimization could be performed to find an optimal design solution.

This is done on a similar model in Section 7.7.3 below.

In the case where EDSMean values are allowed to differ between subsystems and

risk mitigation is performed at the subsystem level, two methods of trading risk at

the system level are available including trading using risk-neutral risk metric values or

a unified EDSMean system-level value. The example in this section used risk-neutral

risk metric values to enable a system-level view of risk. The next section demonstrates

how risk can be traded and mitigated at the system level when using a system-wide

EDSMean value.

7.7.2 Unified EDSMean Value Decision-Making

In the case where a CDC has a unified EDSMean value supplied by a key stakeholder or

customer, the risk-informed decision making framework can be implemented to support

the decisions of the subsystem chairs using the key stakeholder or customer’s EDSMean

value. This allows for risk mitigation to occur at the system level rather than the

subsystem level if desired or for risks to be compared across subsystems while using

the utility risk curves method developed in Chapter 6. A case where this method of

implementing the risk-informed decision making framework would find use is in a CDC

where a customer wishes for the conceptual design resulting from a trade study to reflect

their risk appetite and not the individual risk appetites of the subsystem engineers.

Figure 7.9 shows a parallel axis graph of pertinent data derived from a parameter

scan of the weather satellite design problem used in Section 7.7.1 but with a unified

EDSMean = 3.1. The black line indicates the most preferred design as defined by

minimizing mass, cost, and system-level certainty equivalent. At this point, a design
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optimization could be performed to find the optimum design solution. Section 7.7.3

demonstrates an optimum design solution process below.

7.7.3 Optimization of Satellite Design Using the Risk-Informed De-

cision Making Framework

The method of implementing the risk-informed decision making framework presented in

Section 7.7.2 was used in a system optimization process performed in ModelCenter. The

weather satellite example used in previous sections in this chapter was optimized using

a Darwin algorithm that was set to specifically seek a design that minimized the system-

level certainty equivalent. 4572 runs were needed in order to find an optimum design

solution. Figure 7.10 shows the progression of the system-level certainty equivalent as

the optimization was run.

In conclusion, the various methods of implementing the risk-informed decision mak-

ing framework can be used with optimizer packages in order to find optimum designs.

7.8 Conclusion

This chapter presented several methods and examples of the implementation of the

risk-informed decision making framework. The examples are implemented in a combi-

nation of ModelCenter, Excel, and MATLAB. The places in which the risk-informed

decision making framework are implemented in the trade study process were outlined

and demonstrated. Elements of this framework can be used in other places throughout

the complex conceptual system design process and are not limited only to trade studies.
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Figure 7.10: Weather Satellite Design Using a System-Level EDSMean Value Optimized
for Minimized System-Level Certainty Equivalent
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The methods presented in this chapter can be used both in automated trade studies

and in trade studies where subsystem engineers make design decisions.

Several limitations exist within the framework. For instance, the choice of an RSF is

left up to the practitioner with several broad rules of thumb provided in the literature.

Creation of specific guidelines for the appropriate selection of RSF throughout a wide

array of industries is needed. Another limitation of the framework is the assumption

that there are no interaction effects between risks. This limitation can be addressed

through the implementation of more advanced risk methods into the framework that

can account for interaction effects. While limitations do currently exist within the

framework, they are surmountable with further research. Chapter 8 goes into more

detail on additional areas of future research.

The risk-informed decision making framework enables practitioners to account for

and make decisions based upon risk information within conceptual complex system

design trade studies. A meaningful integration of the consideration of risk into trade

studies is achieved thus elevating risk consideration in trade studies to the level of consid-

eration as other important system-level metrics, parameters, and design choices. Design

decisions and design trade-offs are explicitly allowed based upon the risk preference of

individual engineers, and the risk preference of individual customers. The framework

has the potential to change the outcome of, and bolster trade studies with additional

validity via a more thorough and rigorous consideration of risk and risk appetite during

trade studies.
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Chapter 8 –Future Work

This chapter contains information on future research directions spawned from the risk-

informed decision making framework. An ongoing comparison of E-DOSPERT and

lottery methods is discussed in Section 8.1. Section 8.2 discusses user testing of the

risk-informed decision making framework. The addition of common engineering risk

methods is outlined in Section 8.3. Potential methods of considering the benefits of

choice outcomes and of considering multiple choice outcomes are presented and dis-

cussed in Section 8.4. Section 8.5 lays out further case study development and the

rationale for presenting the risk-informed decision making framework in different in-

dustrial contexts. Section 8.6 discusses the additional research needed in order for

the E-DOSPERT to be as respected as other psychometric risk surveys such as the

DOSPERT. Finally, the chapter concludes with a discussion of ongoing research, ex-

pected publications, and other relevant information.

8.1 A Comparison of E-DOSPERT and Lottery Methods

Chapter 6 postulates that using E-DOSPERT to generate utility risk curves is more

appropriate than lottery methods for early phase conceptual design. This postulation

is based upon lottery-based risk curves only being valid over the range of values used

in the initial lotteries. In the case of early phase conceptual design, the range of values

over which a design might be developed is not always fully known or can change during

the design process. Re-running lotteries in order to expand risk curves would quickly
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become burdensome to the practitioner. Further in the case where utility risk curves

are developed based upon client or customer risk appetites, as was the case in Section

6, conducting multiple lottery sessions is impractical. Finally, evidence exists in the

literature that lotteries do not closely match what individuals believe they will do

[77]. However, actions that individuals take more closely align with the predictions of

lotteries than they do to self-reporting methods. This can be interpreted as evidence

that psychometric risk surveys are more appropriate to test for aspiration than for

actual future performance.

Based upon this information, a comparison between the E-DOSPERT survey and

lottery methods needs to be performed in order to confirm the postulation. At the

time of writing, this work is underway in conjunction with a colleague at the USyd and

Texas A & M. A survey instrument has been created that compares two of the identified

engineering risk domains in Chapter 5 between lottery methods and the E-DOSPERT.

Institutional Review Board (IRB) approval was recently obtained to conduct the survey

with undergraduate and graduate participant pools. Survey administration shall begin

shortly. A total participant population of 60 to 80 people is needed in order to perform

a logistic regression.

Following analysis of the initial E-DOSPERT and lottery method comparison, the

survey instrument will be expanded to encompass all five identified E-DOSPERT sub

domains. The comparison will be validated initially using university students. Following

satisfactory results at the university level, professional engineers will be administered

the comparison survey in order to verify that results are consistent between student and

professional populations. Based upon the results of Pennings and Smidts’ research [77],

it is expected and desired that the E-DOSPERT will be found to predict aspirations

while lottery methods will predict future actions.
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8.2 User Testing of the Risk-Informed Decision Making Framework

While individual elements of the risk-informed decision making framework have been

tested with user groups [82, 85], the full framework has yet to be tested outside of

computer simulations and small-scale pilot tests. The framework must be tested in

several stages prior to industrial CDCs adoption. First, the framework shall be tested

upon a university student participant pool in a simulated CDC similar to what was

done in Van Bossuyt and Tumer [82] and similar to what was described in Chapter

4. Next, a limited trial of the method shall be performed with CDC design engineers.

Finally, the framework will be trialled in an industrial CDC.

Based upon the results of each stage of user testing, the framework and its con-

stituent parts shall be modified as necessary to better realize the goals of this research.

This shall include additional user interface development. For instance, improvements to

the graphical displays used to present risk information in CDC environments is needed.

The interfaces presented in this dissertation are research quality and will need to be

refined further for industrial use. An example of this is Figure 4.3 which was used to

display risk information during testing of the risk trading methodology presented in

Chapter 4. While the graphical display in Figure 4.3 was sufficient for the auspices of

the research, it is not expected to be found sufficiently pleasing by design engineers in

industry.

Further development and refinement of the framework and constituent methods

will continue until the framework is sufficiently progressed in order to be commercially

implemented. Commercial implementation shall be conducted outside of the auspices

of this research.
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8.3 Adding Risk Methods to the Risk-Informed Decision Making

Framework

While FMEA and FTA have been demonstrated in the risk-informed decision making

framework and the risk trading methodology respectively, many other common engi-

neering risk methods can and should be implemented into the framework. Section 2.5

presents a brief overview of some of the many methods available to the practitioner.

Common methods such as RBD, ETA, and fever charts shall be initially targeted for

integration into the risk-informed decision making framework. Other methods such as

FFIP and FFDM shall be investigated for integration after successful user testing of

the framework.

8.4 Considering Benefits and Multiple Outcomes Using Utility The-

ory in Risk-Based Design

While the consequence side of Equation 8.1 has been examined in Chapter 6 and im-

plemented in the risk-informed decision making framework, the benefits side of the

equation has not been explored fully in this research. The risk and consequential cost

sides of the formula are represented by Bm+x and Aq+y where Bm+x = probability of

benefit × outcome of benefit and Aq+y = probability of risk q+y× outcome of riskm+x. The

benefit and risk probabilities all sum to 100%. Additionally, multiple outcomes beyond

a strictly nominal or failed state have not been considered. Equation 8.1 is able to

account for multiple outcomes with multiple benefits and consequences.

Rn = Bm +Bm+1 + . . . +Bm+x +Aq +Aq+1 + . . . +Aq+y (8.1)
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This research has only examined the costs associated with mitigating risks and not

the benefits of unrealized risks. For instance, a power system might be chosen for a

spacecraft that has a very large consequential cost but in turn has a very large monetary

yield. Initial testing of experimental MATLAB code has been conducted to examine

the benefit side of Equation 6.1 using modified FMEA data. Results are promising that

a modification of existing risk methods and functional modeling techniques will yield

an expansion to the risk-informed decision making framework.

The methods implemented in the risk-informed decision making framework currently

are demonstrated with binary event outcomes where the system or subsystem will either

be in a nominal or failed state depending upon if the risk is realized. It is often the

case in practice that systems can fail into a variety of non-nominal states. Equation

8.1 has the ability to account for more risk and benefit outcomes than only a single

binary pair. Experimental testing has been conducted to investigate integrating existing

risk methods such as FMEA and FTA into a modified risk-informed decision making

framework that can account for multiple event outcomes. The results are promising

although much work remains to be done in this area.

In order for the benefits side of Equation 8.1 and multiple event outcomes to be

realized as part off the risk-informed decision making framework, additional research

and development of the constituent methods must be undertaken. Future research and

publications will be focused upon this topic. This is expected to be a very fruitful area

of further research.
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8.5 Additional Case Studies

While the case studies presented throughout this dissertation are sufficient to show

the benefits and nuances of the risk-informed decision making framework, additional

case studies are needed in order to gain a wider acceptance of the framework. The

case studies that implement the framework or its constituent parts are all based upon

simplified spacecraft models. This is useful for aerospace organizations such as JPL and

Space-X but is less informative for companies such as Boeing Commercial Airplanes or

Airbus.

Future case studies shall be developed as part of ongoing publication efforts that will

replicate the simplified spacecraft model used throughout this dissertation in complexity.

Of particular interest is a commercial aircraft model. Initial work has already been

performed to model several relevant aircraft subsystems. Further development will

be performed and a simplified commercial aircraft model will be implemented in the

framework in the near future.

Additional case studies of future interest include a nuclear power plant model, a

hydroelectric power plant model, an automotive example derived from freight trucks,

and a 3-D rapid prototype printer example. As future work is conducted with further

developing different components of the risk-informed decision making framework, ad-

ditional case studies will be created and implemented. Through the use of additional

case studies, industrial sectors beyond aerospace are expected to become aware of the

risk-informed decision making framework.
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8.6 Further Validation of the E-DOSPERT

As discussed in Chapter 5, two engineering risk sub-domains have been strongly iden-

tified through factor analysis. Strong evidence exists that there are two additional

sub-domains and evidence exists that a fifth sub-domain might also be present. In or-

der to thoroughly validate all five sub-domains, further user testing must be conducted

and the E-DOSPERT survey instrument should be further revised.

Achieving a stable, well-respected psychometric risk scale will require testing of

the E-DOSPERT upon several thousand participants. The well-respected DOSPERT

scale was developed over several years and was tested upon thousands of undergraduate

students and the general population. An initial version of the DOSPERT scale was

released in 2002 [40] while a shortened version of the scale was released in 2006 [47].

Additional testing and validation was conducted in multiple languages and cultures.

In order for the E-DOSPERT survey to take on the prominence in the engineering

community that the DOSPERT test has taken on in the psychology community, a

similar effort will be needed.

Long-term development and validation of the E-DOSPERT test shall continue be-

yond the completion of this dissertation. Research partners in Australia will continue to

work with the author of this dissertation to realize the goal of understanding engineering

risk appetite.

8.7 Conclusion

This chapter reviewed several avenues of future research based upon the research pre-

sented in this dissertation. Several of the areas are expected to yield many high quality
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conference papers and journal articles both in the short term and over a longer time-

frame. Several research areas could easily be converted into masters-level theses and

a solid starting point for dissertations. Some areas, such as developing new models

to be examined using the risk-informed decision making framework, would make good

projects for undergraduate research assistants.

In the short term, research will be completed and a journal paper will be prepared

examining the differences between E-DOSPERT and lottery methods as outlined in

Section 8.1. A journal paper will also be developed based upon the risk-informed

decision making framework presented in this dissertation. Further investigation of the

benefit side of Equation 8.1 and multiple choice outcomes, as discussed in Section 8.4,

will also be conducted in the short term with a journal publication resulting. The other

sections of this chapter are expected to yield high quality publications over a longer

time scale.
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Chapter 9 –Conclusion

In the introductory and background chapters (Chapters 1 and 2) of this dissertation a

gap was identified in industry and academia wherein customers and engineers do not

have a voice when considering risk appetite in the in the dynamic shaping of the outcome

of early-phase conceptual design trade studies. Existing methods either do not capture

risk information during conceptual design trade studies or consider risk information

after a design has been created and chosen. A risk-informed decision making framework

was developed in this dissertation that fills the gap in existing academic and industry

methods which allows the risk preferences of the customer or engineer to dynamically

shape the outcome of early-phase conceptual design trade studies.

9.1 Research Objectives and Contributions

In order to meet the goal of allowing customer or engineer risk preferences to dynami-

cally shape the outcome of early-phase conceptual design trade studies, a risk-informed

decision making framework was developed. Three key objectives necessary for the

framework’s success were defined, developed, and demonstrated. This section reviews

the objectives, how they were developed and demonstrated, the status of the research

into each objective, and the contributions each objective makes to the literature and

professional practice.
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9.1.1 Risk-Informed Decision Making Framework

Currently, trade studies conducted in the early phases of conceptual complex system

design do not allow individual subsystem engineers to dynamically assess risk during the

trade study process. Further, when risk is considered, it is analyzed using a risk-neutral

risk appetite that does not support decisions based upon individual risk appetite. The

risk-informed decision making framework addresses these issues by integrating the meth-

ods developed in Objectives #1-3. This is achieved by trading traditional engineering

risk method metrics in trade studies as a system-level parameter, as shown in Objec-

tive #1. In order to capture the risk appetite of an individual customer or engineer,

an engineering psychometric risk survey is developed in Objective #2. A method of

using the aspirational information attained through the E-DOSPERT test developed

in Objective #2 was developed using utility functions in Objective #3 that provides

risk-informed decision support to engineers wishing to make decisions supported on the

risk-related aspirations of the E-DOSPERT test taker. Together these three objectives

allow the risk-informed decision making framework to succeed at providing a method

of making risk-informed decisions and trades during trade studies that is based upon

risk appetite.

The methods of framework deployment presented in Chapter 7 will appear in a

forthcoming journal article. Additional research is in progress with USyd and Texas A

& M to further develop the framework.
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9.1.2 Objective #1: Trade Risk as a System-Level Parameter

The goal of Objective #1 is to allow risk to be traded as a system-level parameter on

par with other important system-level parameters in trade studies. For example, in

space system design important parameters such as cost, power, and mass are routinely

traded but at present risk metrics are not. The risk trading methodology developed in

Chapter 4 presents a method of trading risk as a system-level parameter equal to other

important parameters such as cost, power, and mass.

The method presented in Chapter 4 has appeared in a well received conference

paper at the ASME 2010 IDETC and CIE in the Systems Engineering, Information

and Knowledge Management track of the CIE conference as paper number DETC2010-

29016 [82] and is at the time of writing submitted to RIED. The risk trading method

was developed in collaboration with JPL and was well received by key staff related to

Team-X, the JPL CDC. Research for this objective spawned auxiliary research that

investigated the risks and obstacles associated with upgrading from CDC trade study

collaboration and optimization tools currently in use in many CDCs to a more modern

tool such as ModelCenter. A conference paper was published in the proceedings of the

ASME 2010 International Mechanical Engineering Congress and Exposition (IMECE) in

the Risk Analysis track as paper number IMECE2010-39213 [82] on the risks upgrading

and migrating to new trade study software.

9.1.3 Objective #2: Determine Engineering Risk Appetite

In order to better understand the risk appetite of engineers, Objective #2 developed

the E-DOSPERT, a psychometric risk survey designed specifically for engineers. The
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E-DOSPERT was modeled after the well regarded DOSPERT survey that examines risk

appetite in peoples’ personal lives. The development of the E-DOSPERT was conducted

in close collaboration with USyd and is ongoing. The results of the research into strongly

point to five domains of engineering risk appetite including Processes, Procedures, and

Practices; Engineering Ethics; Training; Product Functionality and Design; and Legal

Issues. The E-DOSPERT instrument was found to be statistically reliable in measuring

engineering risk aversion and risk seeking, and to measure engineering risk aversion

and risk seeking in the Processes, Procedures, and Practices; and Engineering Ethics

domains. Factor analysis strongly points toward the other three sub-domains being

present.

A well received conference version of the journal manuscript presented in Chapter

5 appeared in the ASME 2011 IDETC and CIE in the Uncertainty and Risk in Design

track of the Design Theory and Methodology conference as paper number DETC2011-

47106 [85]. A journal manuscript has been submitted to JMD.

9.1.4 Objective #3: Account for Risk Appetite in Decision Making

Existing methods of using utility functions to make risk appetite-based decisions uti-

lize lottery methods which are predictive in nature. Psychometric risk surveys have

been found to be predictors of aspiration rather than future performance. Psycho-

logical research has shown that stakeholders and decision-makers hold domain-specific

risk attitudes that often vary between individuals. Current engineering risk meth-

ods and tools assume a risk-neutral risk appetite. Therefore, Objective #3 combined

E-DOSPERT metrics with monotonic exponential utility functions in order to form a

risk-informed decision support tool that allows decision-makers to make decisions based
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in part upon risk information as viewed through the lens of risk appetite. The method

developed in Objective #3 is shown to change risk-based decisions in certain situations

where a risk-averse or risk-tolerant decision-maker would likely choose differently than

a decision-maker with a risk neutral risk appetite.

The journal manuscript presented in Chapter 6 will appear in AIEDAM in the Fall

2012 Vol. 26, No. 4 special issue on intelligent decision support and modeling [89]. A

conference version of the article will appear in the ASME 2012 IDETC and CIE in the

Uncertainty and Risk in Design track of the Design Theory and Methodology conference

as paper number DTM-70399 [85]. Research and development of the methods developed

in Objective #3 are ongoing and in partnership with USyd and Texas A & M.

9.2 Broader Impact

The success of the research efforts detailed in this dissertation yield benefits for a va-

riety of sectors including education, industrial and government customers of CDCs,

and for CDCs themselves. A CDC using the risk-informed decision making framework

developed in this dissertation will benefit by creating conceptual designs that quantita-

tively take into account risk appetite when making risk-based design decisions. Rather

than make risk-informed decisions prior to or after a conceptual design has been cre-

ated, those decisions will be made during the trade study process and with risk metrics

elevated to the same level as other system-level tradeable parameters.

Industrial and government customers of CDCs will be the beneficiaries of conceptual

designs that more closely match their desired risk appetites. The conceptual designs

generated using the risk-informed decision making framework are quantitatively gen-

erated and the risk-based decisions made as part of the trade study process are made
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based in part upon the risk appetites of the customers. In academia, undergraduate

education is already benefiting from the risk appetite component of this research being

integrated into design curricula as has been done with the Meyers Briggs Personal-

ity Type test. At the graduate level, courses on complex system design will benefit

from the framework developed in this research being taught along side other important

conceptual design methods.

9.3 Closing Thoughts

The risk-informed decision making framework and supporting methods developed in

this dissertation provide a means to produce conceptual designs that align more closely

with the risk appetites of stakeholders and customers. To date, no other method or

framework encompasses the ability to trade risk in trade studies as a system level

parameter, the determination of engineering risk appetite, and the ability to make risk-

informed decisions based upon risk appetite in an aspirational context. If implemented

widely, the risk-informed decision making framework promises to radically alter the way

in which CDCs perform trade studies. Rather than consider risk only as an afterthought

or ignore risk all together, risk and risk appetite will be considered and acted upon

throughout the trade study process. The end result will be conceptual designs that are

more in line with customer and stakeholder risk appetites. This is expected to increase

satisfaction in conceptual designs; and increase the knowledge of what risks are present,

how they are to be dealt with, and the rationale behind risk-based decisions.
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Acronyms

ATSV Advanced Trade Space Visualization

CDC Collaborative Design Center

ESA European Space Agency

ETA Event Tree Analysis

FFDM Function Failure Design Method

FFIP Functional Failure Identification Propagation

FMEA Failure Modes and Effects Analysis

FMECA Failure Modes and Effects Criticality Analysis

FTA Fault Tree Analysis

ISHM Integrated System Health Management

JPL Jet Propulsion Laboratory

NASA National Aeronautics and Space Administration

PRA Probabilistic Risk Assessment

QRA Qualitative Risk Assessment

RBD Reliability Block Diagram

RED Risk in Early Design

RUBIC Risk and Uncertainty Based Integrated and Concurrent design methodology

RPN Risk Priority Number

RAP Risk and Rationale Assessment Program

DDP Defect Detection and Prevention

CRM Continuous Risk Management
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PDC Project Design Center

EU Expected Utility

DOSPERT Domain-Specific Risk-Taking

EV Expected Value

E-DOSPERT Engineering-Domain-Specific Risk-Taking

OSU Oregon State University

USyd University of Sydney

NSR Non-Substantive Response

SNAP SuperNova /Acceleration Probe

DBD Decision-Based Design

ISHM Integrated Systems Health Management

NSF National Science Foundation

MLE Maximum Likelihood Extraction

KMO Kaiser-Meyer-Olkin

MBTI Meyers-Briggs Type Indicator

DBD Decision-Based Design

RCDM Robust Concept Design Methodology

SOS Subjective Objective System

QFD Quality Function Deployment

ASME American Society of Mechanical Engineers

AIEDAM Artificial Intelligence for Engineering Design, Analysis, and Manufacturing

RIED Research in Engineering Design

JMD Journal of Mechanical Design

IMECE International Mechanical Engineering Congress and Exposition
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CIE Computers and Information in Engineering

IDETC and CIE International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference

IRB Institutional Review Board

CESD Complex Engineered Systems Design Laboratory




