Porous Media Test Bed

Final Project Report

David Chadwick (2) Douglas Van Bossuyt (3) Travis Wilhelm (1)

ME 418/419 2006/07 Group Number: 1 Project Number: 10 Project Sponsor: Professor Liburdy Faculty Advisor: Professor Liburdy Sponsor Mentor: Professor Liburdy

DISCLAIMER

This report was prepared by students as part of a college course requirement. While considerable effort has been put into the project, it is not the work of a licensed engineer and has not undergone the extensive verification that is common in the profession. The information, data, conclusions, and content of this report should not be relied on or utilized without thorough, independent testing and verification. University faculty members may have been associated with this project as advisors, sponsors, or course instructors, but as such they are not responsible for the accuracy of results or conclusions.

Porous Media Test Bed Final Report

EXECUTIVE SUMMARY

The goal of this project was to design, build, and qualify a high Reynolds number flow visualization porous media test bed to support Dr. Liburdy's research. The project must make use of existing Time Resolved 3-D Particle Image Velocimetry equipment. The paper design is engineered to achieve Reynolds numbers of greater than 200 and to minimize edge effects in the visualization region. While funding was not available to construct the paper design, construction of a proof-of-concept did take place and testing was conducted. Testing results indicate that assumptions made during the design process were correct and that the paper design has a high probability of success if implemented.

This report provides background, design requirements, a review of existing designs, potential design options, a final paper design, fabrication, testing and analysis, and a project summary including lessons learned for a 3-D porous media test bed.

The Project Description section provides background on the project, a brief justification for the project, information about the project sponsor and mentor, design requirements, and a House of Quality. Initial design requirements for this project included achieving a Reynolds number greater than 200, using Time Resolved 3-D Particle Image Velocimetry equipment, and having an index of refraction-matched imaging area. Final design requirements changed the flow rate to the inertial flow regime. However, the paper design presented in later sections is still designed for the original design requirements.

The Existing Designs section reviews current designs from budget to state-of-the-art. The current state-of-the-art system employs an MRI machine to directly image pore flow without the need for optical access, index of refraction-matched materials, cameras, seeding particles, or lasers. Budget systems often use electrodes with salt water being injected as a tracer to collect diffusion data.

The Possible Designs section reviews two potential designs, one of which relies on sealant to bond different parts of the test section together while the other uses a series of bolts and gaskets.

The Design Selected section includes all relevant engineering data on the design selected, a bolt-and-gasket flow section with inlayed borosilicate windows, and provides detailed design and fabrication drawings to construct a flow channel which meets the original design requirements.

The Cost Reduction section outlines several potential avenues for additional cost reduction that were not followed in the paper design. Cost versus performance tradeoffs are briefly discussed.

The Fabrication section describes the budgetary problems encountered, a false proof-of-concept start, and the final proof of concept fabrication. Details of materials used during fabrication are included.

The Testing section includes the original testing plan, potential design modifications, and final testing plan. It also reviews the testing data and shows analysis of collected data. Due to time constraints, the quantity of data taken was not enough to achieve statistical significance.

The Conclusion section reviews team interaction, lessons learned, mistakes made, major issues encountered during design, construction, and testing, and includes the final budget and balance sheet.

TABLE OF CONTENTS

 PROJECT DESCRIPTION	
1.2. Design Requirements	
• •	
	9
1.2.1. Description of Requirements	
1.2.2. Changing Design Requirements	
1.2.2.1. List of Original Design Requirements	
1.2.2.2. List of Final Design Requirements	
1.2.3. House of Quality	
2. EXISTING DESIGNS AND DEVICES	
2.1. Laser Anemometry Experiment	
2.2. Probe - Dispersion Experiment	
2.3. Electromechanical Microprobe Experiment	
2.4. Electrode Probes and Pipedal Plate Experiment	
2.5. PIV Experiment	
2.6. MRI Experiment	
3. POSSIBLE DESIGNS	
3.1. Test Bed Design #1	
3.2. Test Bed Design #2	
3.3. Common Design Features	
3.3.1. Pump Selection	
3.3.2. Bead Selection	
3.3.3. Working Fluid	
3.3.4. Ductwork	
3.3.5. Sealing Method	
3.3.6. Imaging Equipment	
3.3.7. Sizing the Test Bed	
3.3.8. Flow Straightening	
3.3.9. Diffuser	
3.3.10. Seeding Particles	
3.3.11. Measurement	
4. DESIGN SELECTED	
4.1. Hydraulic Design	
4.1.1. Flow Loop Operation	
4.2. Pump Selection	
4.3. Bead Selection	
4.4. Working Fluid	
4.5. Ductwork	
4.6. Imaging Equipment	
4.7. Sizing the Test Bed	
4.8. Flow Straightening	
4.9. Sealants	
4.10. Window Sizing and Design	
4.11. Diffuser	9

4.12. Seeding Particles	9
4.13. Measurement	9
4.14. Flow Loop Material Selection	
4.15. Working Fluid Reservoir	
5. COST REDUCTION	
5.1. Increased Bolt Pattern Spacing	
5.2. Remove Intro-Serts	
5.3. Use Permanent Chemical Seals	
5.4. Machine Borosilicate Window	
5.5. Select Alternative Pump	
5.6. Use In-House Measurement Equipment	
5.7. Select Alternate Throttling Valve	
5.8. Drainage Valve and Tank	
6. FABRICATION	
6.1. Original Fabrication Plan	
6.1.1. Cost Vs. Budget	
6.1.1.2. Budget	
6.1.2. Purchased Components	
6.1.3. Fabricated Components	
6.1.4. Sourcing and Lead Times	
6.2. Fabrication Outcome	
7. TESTING	
7.1. Original Testing Plan	
7.1.1. Evaluation of Requirements	
7.1.1.1. Evaluation of Design Requirement #1	
7.1.1.2. Evaluation of Design Requirement #2	
7.1.1.3. Evaluation of Design Requirement #3	
7.1.1.4. Evaluation of Design Requirement #4	
7.1.1.5. Evaluation of Design Requirement #5	
7.1.1.6. Evaluation of Design Requirement #6	9
7.1.1.7. Evaluation of Design Requirement #7	9
7.1.1.8. Evaluation of Design Requirement #8	9
7.1.1.9. Evaluation of Design Requirement #9	9
7.2. Modified Testing Plans	
7.2.1. Dye Testing	9
7.2.2. Intermediate Testing Plan	9
7.2.2.1. Abstract of Testing Plan	
7.2.2.2. Background	
7.2.2.3. Experiment Design	
7.2.2.4. Experiment Procedures	
7.2.2.5. Materials	
7.2.2.6. Data Collection	
7.2.2.7. Analysis	
7.2.2.8. Conclusion	
7.2.3. Final Testing Plan	
7.2.3.1. Experiment Design	
7.2.3.2. Procedure and Data Collection	
7.2.3.3. Equipment and Hardware Modifications	
	5
6/13/2007 Chadwick, Van Bossuyt, Wilhelm	3

7.2.3.4. Analysis	9
7.2.3.5. Conclusion	9
7.3. Design Requirements Analysis	9
8. PROJECT SUMMARY	9
8.1. Group Interactions	
8.2. Technical Knowledge Gained	9
8.3. Mistakes Made	9
8.4. Major Issues Encountered During Design Phase	9
8.5. Major Issues Encountered During Build Phase	9
8.6. Major Issues Encountered During Testing and Analysis Phase	9
8.7. Final Budget	9
8.8. Conclusion	
9. APPENDIX SECTION 1: ENGINEERING CALCULATIONS AND DATA	9
9.1. Porous Media Test Bed Pressure Drop Calculations	9
9.2. MSDS Sheets for Working Fluid	
9.3. Honeycomb Flow Straightener Length Determination	9
9.4. ATF Fathom Output (Low Flow Rate)	9
9.5. AFT Fathom Output (High Flow Rate)	9
9.6. Flow Rate Calculations	
9.7. Pump Horsepower Preliminary Calculation	
9.8. Wall Thickness Calculations	
9.9. Cumulative Force Calculations on Honeycomb Flow Straightener	9
9.10. Viewing Window Thickness Calculations and Spreadsheet	9
9.11. Component Source Datasheet	9
9.12. Test Bed Material Selection Spreadsheets	
9.13. Flow Channel Cross Section Maximum and Minimum Dimensions	
10. APPENDIX SECTION 2: BILL OF MATERIALS	
10.1. Test Bed Price Estimation	
10.2. Component Source and Lead Times	
11. APPENDIX SECTION 3: PART DRAWINGS	
11.1. Drawing Package	
11.2. Modified Fabrication Plan Drawing	9
12. BIBLIOGRAPHY	
13. ADDITIONAL SOURCES	9

ACKNOWLEDGEMENTS

The project team would like to thank Dr. Liburdy for his time, effort, extreme patience, and flexibility throughout the fall of 2006 and the winter of 2007. Without him, this project would have never been finished. The team would also like to thank Dr. Parmigiani who was accommodating, kind, and always ready with an idea to keep the project on-target. Additionally, the team would like to thank Dr. Wood who donated his expertise, flow valves, and dye. Of course, the team must extend a heartfelt "we're sorry!" to the graduate students in the lab who were periodically disturbed from their research to help a motley crew of undergraduates complete a senior design project. The wives and girlfriends of the three team members must also be thanked for the patience and understanding they showed toward the many long nights and weekends the team spent in the lab rather than with them.

To everyone who helped us, THANK YOU!

- The Porous Media Team

1. PROJECT DESCRIPTION

1.1.Background

The goal of this project was to design, build, and qualify a high Reynolds number flow visualization porous media test bed to support Dr. Liburdy's research in this field. As part of the design task, the design team worked closely with Dr. Liburdy to fully define the critical design requirements and guarantee that the end product would suit the research needs of the university.

Being able to visualize flow through porous media is an important part in the process of developing equations to simulate flows through porous media beds. Porous media beds have many applications in a variety of industries. For instance, the water treatment world uses porous media in the slow sand water filtration process. In the chemical industry, many chemical reactors use porous media beds as catalyst chambers. In the automotive industry, catalytic converters are porous media beds.

High Reynolds number flow regimes might become particularly important to the chemical engineering world in the form of more efficient reactor beds and higher throughput. There is a particularly interesting region of flow regime which Dr. Liburdy wants to investigate using the to-be-designed porous media test bed in the Re=200 range.

1.2.Design Requirements

1.2.1. Description of Requirements

The primary function of this porous media test bed is to take visual images of flow through porous media at Reynolds numbers greater than 200. While there are many ways to visualize flow through a porous media bed, the Mechanical Engineering Department at Oregon State University already owns a Time Resolved Three Dimensional Particle Image Velocimetry (TR 3-D PIV) rig which, due to a variety of factors ranging from budget to in-house familiarity with the system, has been identified as the visualization method for this project. TR 3-D PIV works by shining a laser through a porous media bed filled with moving fluid impregnated with small glass beads filled with dye that fluoresces when struck by laser light. The two cameras (two cameras allow for 3-D imagery) have filters on their lenses which only allow the specific wavelength of light that the fluorescing dye emits through to the CCD's.

To minimize distortions, all materials must have as close to the same refractivity indices as possible. This means that the porous media, fluid, and test bed walls all must be refractivity matched. Because of this, the design team will most likely have to mix their own fluids to develop an inexpensive fluid to meet the project budget (commercially available fluids with refractive indices matched to Plexiglas, Pyrex, or Lexan are generally extremely expensive). In a departure from classical porous media flow regime studies, this test bed will use randomly packed porous media. This means that this particular test bed will not have carefully cut half and quarter spheres glued (with matching refractivities) to the test bed walls. Additionally, the entire test rig must have good control over other factors, such as pressure and flow rate, which directly affect the Reynolds number and, thus, make the test bed adjustable for different flow regimes. This also means that the system must have good measurement equipment attached at the correct points to monitor things like head loss and flow rate. Finally, the test bed system must be safe and easy to use for Professor Liburdy and his research assistants to operate.

1.2.2. Changing Design Requirements

Due to issues of funding, discussed in later sections of this document, the original design requirements were modified to meet requirements of the second half of the course for which this document was prepared. Both original and final design requirements are presented here. The largest change between the two sets of design requirements is item 7 on the original list or item 6 on the final list. The flow regime was changed from above Reynolds numbers of 200 to the inertial flow regime.

1.2.2.1. List of Original Design Requirements

- 1. The test bed shall consist of a porous media bed, a closed flow loop with appropriate pumping apparatus, measurement and control equipment, and appropriate diffuser plates to guarantee uniform flow through the bed.
- 2. The porous media bed shall be of sufficient depth and width to make edge effects negligible. Literature indicates that between 3.5 and 10 diameters of porous media from the edge generally are sufficient to negate edge effects.
- 3. The test bed shall be able to take appropriate direct and indirect measurements potentially included but not limited to pressure, temperature, flow rate, samples of liquids from different locations within the media bed, etc... These measurement abilities will be appropriate to quantify the flow in the media bed.
- 4. The test bed shall have sufficient optical access to take desired measurements and images using the TR 3-D PIV equipment available in the OSU mechanical engineering department.
- 5. The test bed, media, and fluid shall be designed to optimize flow visualization in conjunction with the TR 3-D PIV. This means that everything must have matched indices of refraction.
- 6. The test bed shall be vibrationally isolated from its surroundings and the porous media bed shall be isolated from any sources of vibration within the machine (i.e.: pump) that could adversely affect the critical measurements in the system.
- 7. The test bed shall operate in the Re>200 range. This requirement helps set many of the design parameters.
- 8. The test bed shall be designed with safety and integrity of the system in mind based on the system operating parameters.
- 9. The test bed shall have adequate flow loop control with some or all of the following elements being controlled: pressure, flow rate, temperature, etc.

1.2.2.2. List of Final Design Requirements

- 1. The design shall consist of a porous media bed, a flow loop with appropriate pumping apparatus, measurement and control equipment.
- 2. The flow cell shall be of sufficient depth and width to make edge effects negligible.
- 3. The flow cell shall be able to take appropriate direct and indirect measurements potentially included but not limited to pressure, temperature, flow rate, etc... These measurement abilities will be appropriate to quantify the flow in the media bed.
- 4. The flow cell shall have sufficient optical access to take desired measurements and images using the TR 3-D PIV equipment available in the OSU mechanical engineering department.
- 5. The material of the flow cell, media, and fluid must have matching indices of refraction.
- 6. The flow cell shall operate into the porous media inertial flow regime.

7. The flow cell shall be designed to withstand operating conditions, such as pressure, temperature, and flow rate.

1.2.3. House of Quality

The House of Quality (Figure 1) and Dependency Chart (Figure 2) presented below represent an analysis of the original design requirements. Because row number 10 on the Original House of Quality has changed in name only but not in importance, only the original graphics are presented here as updated graphics would be redundant.

Figure 2, the Dependency Chart, indicates which design requirement is dependent on another. The House of Quality (Figure 1) shows customer requirements versus design requirements with correlations, customer importance, and competition benchmark data included.

Whats vs. Hows

X = strong positive

/ = medium positive

Blank = no relationship

/ = medium negative

X = strong negative

	Direction of Improvement					1	2	3	4	5	6	7	8	9	10
Row Number		Customer Importance (Scale 1-5)	Professor Liburdy	Students	Manufacturing	height of porous media	width of porous media	depth of porous media	index of refractions of materials	Renold's number	PH of fluid	head loss	velocity of fluid	size of media (spheres)	porosity
	Customer Requirements														
1	no edge effects		5	5	5										
2	ability to measure pressure		3	3	4										
3	ability to measure flow rate		З	3	4								\times	\times	
4	ability to maintain temperature		З	4	4										
5	use existing camera equipment		5	5	1				\times						
6	minimal light distortion		5	5	5				\succ						
7	minimal vibration from apparatus		2	4	4					\succ		\succ			
8	safety		4	3	1										
9	control of flow rate		3	3	3										
10	reach upper flow regimes		5	3	3										
11	inexpensive		5	5	1	r									
	Competition's Benchmarks														
	Stohr, Roth, Jahne Experiment					5cm	10cm	5cm	1.46					0.8mm	
	Suekane, Yokouchi, Hirai Experiment					28mm	28mm	168mm	n/a	205		.24T/m		28mm	0.48
	Target Values					min	min	min	match	>200	7	0	Re	min	0.3

Figure 1: Original House of Quality

Porous Media Test Bed Final Report

	hieght of porous media	width of porous media	depth of porous media	Reynolds number	head loss	velocity of fluid	size of media shperes	porosity of media
hieght of porous media	-			Х	Х	Х	Х	
width of porous media		-		Х	Х	Х	Х	
depth of porous media			-	Х	Х	Х	Х	
Reynolds number				-				
head loss	Х	Х	Х		-	Х	Х	Х
velocity of fluid		Х	Х	Х	Х	-	Х	Х
size of media shperes		Х	Х				-	
porosity of media								-

Figure 2: Dependency Chart

2. EXISTING DESIGNS AND DEVICES

2.1. Laser Anemometry Experiment

Dybbs and Edwards [1] researched the Darcy to turbulent flow regime in porous media. They used laser anemometry to conduct flow visualization studies. The researchers chose to visualize the flow regime in 3-D. The bed was designed to have two different porous media setups. One was comprised of Plexiglas spheres in a hexagonal packing arrangement and the other was made up of a complex three dimensional Plexiglas rod matrix.

The researchers used a variety of liquids including water, silicone oils, Sohio MDI-57 oil, and mineral seal oil. The final working fluid had a matched refraction index with the Plexiglas and test section components. A dye solution of potassium permanganate was injected at a point source into the fluids to help visualize the flow. The researchers reported some small problems with the dye having slight negative buoyancy but they didn't believe it adversely affected their results [1].

2.2. Probe - Dispersion Experiment

Another research group, Han, Bhakta, and Carbonell, [2] constructed a Plexiglas column with a square test section. The spherical particles composing the porous media test bed were made of urea and formaldehyde and were hollow. The particles were approximately 0.25, 0.35, 0.45, and 0.55 cm in diameter and were randomly packed. The test section had an effective packing height of 150 cm and a cross-sectional width of 27 cm. The system had a dispersion plate at the top to divide the flow evenly through the bed. The system also had an outlet distributor to prevent any disturbance in the visualization area.

The system used a solution of de-ionized water doped with sucrose to closely match the density of the tracer used to aid in flow visualization. The tracer was a solution of de-ionized water and salt [2].

To visualize the flow, the researchers inserted a series of five probes into the column at different heights and with the ability to adjust lateral placement of the probes. The probes measured conductivity in the solution. The salt tracer solution allowed the probes to accurately measure dispersion in the bed. The system required new de-ionized water to constantly flow through the system. The used water was discarded. This was an open loop test system [2].

2.3. Electromechanical Microprobe Experiment

Seguin, Montillet, and Comiti [3] ran an experiment similar to what was discussed in section 1.3.2. They visualized flow regimes beyond the Darcy regime using electromechanical microprobes inserted into the bed. The researchers used a variety of porous media including beds packed with spheres, stratified and reticulated media, and square parallelpipedal plates. Various packing strategies and media sizes were tested.

The test section was constructed of altuglass. A centrifugal pump was used to feed liquid to the column. The flow rate was measured with rotameters. The temperature of the liquid was held between 25 and 30°C. The tracer solution, in this paper called it an electrolyte solution, was a mixture of potassium ferricyanide and sodium hydroxide. The electrolyte solution created was detected with a series of platinum electrode probes spread throughout the column [3].

2.4. Electrode Probes and Pipedal Plate Experiment

Seguin, Montillet, Comiti, and Huet [4] researched the hydrodynamics of porous media beds in much the same manner that the researchers in sections 1.3.2 and 1.3.3 of this document conducted their studies. These researchers used electrode probes inserted into packed beds filled with either 5 or 8 mm diameter spheres. The researchers also used parallel pipedal plates much like the researchers in section 1.3.3. In addition, these researchers used several different types of open cell foam as porous media. This particular research group did not explain their system well enough to reproduce their experimental setup.

2.5. PIV Experiment

Stohr, Roth, and Jahne [5] employed the planar laser-induced fluorescence technique to visualize 3-D pore-scale flow of two immiscible liquids in a porous media bed. They used an argon ion laser operating at 488 nm to excite the fluorescent dye. The PIV system used two CCD cameras mounted at angles to the test bed to provide 3-D imaging. The porous media bed tank was built out of Plexiglas and filled with Plexiglas or silica beads. The Plexiglas beads had some problems with air bubbles trapped inside the beads but the researchers were able to separate the solid beads from the hollow beads by floating them in a solution of salt water.

Several different fluids were used including a family of Dow Corning chemicals and zinc chloride. The paper did not indicate if the system were open or closed loop but an educated guess says that it was open loop [5].

2.6. MRI Experiment

Suekane, Yokouchi, and Hirai [6] conducted porous media flow visualizations using an MRI machine. Water was used as the fluid and porous media consisting of spheres of unknown material were packed into the test bed and loaded vertically into the MRI. The visualization process relied on the MRI equipment. Due to the MRI not needing match refractivity indexes, fluids, such as water, can be used. For research teams with large budgets, this technique appears to be state-of-the-art.

3. POSSIBLE DESIGNS

Two primary designs were considered for the porous media test bed system. The two designs differed mainly in the porous media test bed section of the system. Other components in the system were largely independent of the test bed design and are reviewed following the test bed designs.

It should be noted that any apparent lack of creativity on the project group's part is due in large part to the restrictive nature of the original design requirements. Due to the nature of the experiments that the project sponsor wishes to perform, all major elements of the design are fixed. Figure 3 shows a generic porous media test bed system for use with generic PIV equipment. Generic systems usually contain the following major design components: test bed, pump, tank, diffuser & nozzle, cameras, and laser. Additionally, the generic test bed pictured in Figure 3 has a heating element that is occasionally included when heating of the working fluid is desired.

Figure 3: Generic Porous Media Test Bed System [7]

3.1.Test Bed Design #1

Figure 4: Test Bed Design #1 Potential Configuration

Initially, the project team considered making a test bed with a square cross section, with all four sides constructed solely of polycarbonate plastic or borosilicate glass. Figure 4 shows a potential test bed configuration under this design scheme. Both the top and bottom of the test section have diffusers and flow straighteners with the test section containing the porous media sandwiched in the middle. Four walls make up the test section. The motivations for using this design concept are: camera alignment and laser positioning would be easier and more versatile as compared with the test bed design considered in section 3.2 and the inside of the test bed walls would be smoother than the design discussed in section 3.2 which would aid in minimizing the depth of penetration of edge effects into the porous media bed. This, in turn, would help to decrease the required cross-sectional area of the porous media bed to minimize edge effects, as discussed in original design requirement #2 in section 1.2.2.

In spite of the benefits to a test bed completely made of a transparent material, there are some drawbacks to this approach. When flow rates were analyzed to achieve the desired pore Reynolds number, the developed pressure at the upstream side of the porous media test section was found to be relatively high, as can be seen in Appendix 9.1. There was some concern using a conventional sealant to adhere the test bed sides together would not stand up to the expected pressures and would develop leaks over time, or, in the worst case, experience catastrophic failure. This fear is based on holding the sealant in tension which, in general, is not as strong as holding a sealant in compression. Issues specifically pertaining to sealant are discussed in more detail in section 1.2.2.1.

3.2. Test Bed Design #2

The project team considered another design solution for the porous media test section which, much like the design discussed in section 3.1 is, at its core, a square cross section flow bed. This design calls for the four sides to be built out aluminum, stainless steel, Hastelloy C, or polycarbonate. The sides would be fitted with an appropriately sized piece of polycarbonate or borosilicate glass, symmetrically inlayed, to serve as the viewing window for the imaging equipment. The viewing window would be sealed with a sealant, such as silicone caulking or rubber gaskets, which is discussed more in depth in section 3.3.5, and would be kept under compression, and the test bed would then be assembled with machine screws with the edges of the sides sealed. If additional support was needed to maintain a positive seal along the wall edges, banding or other methods would be used to support the machine screws. Figure 5 shows a potential configuration for this design which includes diffusers and flow straighteners at the top and bottom of the test bed, four walls, inner and outer window gaskets, a window made out of a transparent material such as borosilicate or polycarbonate, an inner window retaining wall, and a wall gasket to prevent leaks between the walls.

Like with the design discussed in section 3.1, there are several concerns and benefits inherent in this design. Using a sealant for the viewing window and the test bed necessitates the chosen sealant to withstand the same pressures as mentioned in section 3.1 but under compressive loading. This means the seals must simply hold under compression rather than tension. Designing using sealant under compression is far easier than under tension. Additionally, the reactivity of the working fluid to the sealant and the metal must be considered to assure an unexpected breach of the test bed does not occur. This issue is discussed more in depth in sections 3.3.3, 3.3.5, and 4.3. Finally, the restriction on the field of view and ease of reconfiguration of the TR 3-D PIV system must be considered. This is discussed more in depth in section 3.3.7.

Figure 5: Test Bed Design #2 Potential Configuration

3.3.Common Design Features

There are several design features that are common to both designs and, therefore, can be considered individual designs areas. They are presented below.

3.3.1. Pump Selection

Pump selection is based upon the pump's ability to overcome the cumulative head losses through the pipe, across the porous media, through the flow straighteners, and to develop the required flow. The

required flow must be free of cavitations, non-pulsing, and as "steady-state" as required to produce results of a desired accuracy from the TR 3-D PIV equipment. These parameters have still not been fully defined.

Once an approximate head loss value is determined, the selection of the pump becomes a matter of pump operation. Several types of pumps are under consideration including centrifugal, positive displacement, and peristaltic pumps.

3.3.2. Bead Selection

There are a multitude of bead types to choose from. The primary criteria to base bead selection on are material composition, the index of refraction, and bead size. Polycarbonate and borosilicate are the two primary material types being considered which have ranges of indices of refraction from 1.58 to 1.59, and 1.47 to 1.53, respectively. These two materials are the primary candidates because of their optical properties, availability, and the availability of sheets of both of these materials to build viewing windows out of in the test bed. The bead size, as defined by the bead diameter, will be determined by whichever yields an appropriate pressure drop in the porous media and is readily available.

3.3.3. Working Fluid

The working fluid for the porous media test bed must match the index of refraction of the beads and viewing glass. After researching relevant literature, the fluids under consideration are silicone oils, and zinc chloride solutions. Silicone oils can achieve a range of indices of refractions from 1.375 to 1.533. Zinc chloride solutions can produce a wide range of indices of refraction which encompass the indices of refraction of both polycarbonate and borosilicate. Most silicone oils on the market today vary in cost from \$50 to \$250 per 500 grams [8]. Silicone oils have a low reactivity and are considered safe to use with a wide range of materials including polycarbonate and borosilicate [9].

Zinc chloride solutions are fairly easy to make in standard university laboratories, as has been demonstrated by Dr. Brian Wood [10], and are relatively inexpensive, ranging in price from \$50 to \$150 per 500 grams [11]. However, zinc chloride solutions have significant health, safety, and design issues as is attested to in the MSDS in Appendix 9.2. A typical well-known zinc chloride solution application is in the production of batteries. Zinc chloride solutions that produce an index of refraction around 1.47 generally have Ph's in the range of 2 [12].

Two other considerations that should be taken into account are viscosity and volatility of the working fluid. The less viscous the fluid is, the easier it is for that fluid to move through the test bed and the less head loss there is across the test bed. Some silicone oils have a very low vaporization point. Some fluids investigated have vaporization points below 0°C [8]. Working with fluids with vaporization points below room temperature is not desirable.

3.3.4. Ductwork

Several materials have been considered for use in the ductwork for the system including steel, PVC, and nylon pipe. The primary decision factors, in order of importance, are reactivity with the working fluid, availability, cost, and surface roughness.

3.3.5. Sealing Method

Several methods of sealing the test bed have been considered which fall under two broad categories of using gaskets and using adhesives to form a seal. Gaskets made out of materials such as rubber and silicone, work well under compression and are used in a wide variety of high-pressure applications such as deep water simulation aquariums and deep ocean pressure vessels with viewing windows [13]. Adhesives, such as silicone, are well suited to join two similar materials together. Consumer-grade fish tanks and private marine boat repair are two good examples of applications of adhesives [14]. One consideration that must be made when dealing with adhesives is index of refraction matching. If any adhesive finds its way into the TR 3-D PIV system's field of view, that adhesive must be index of refraction matched to minimize distortion of the image data [5].

An additional variable that must be considered when selecting sealing methods is the potential corrosion effects of the working fluid. With relatively reactive substances like zinc chloride, this becomes especially important.

3.3.6. Imaging Equipment

The imaging equipment to be used in this project was predetermined by the project sponsor and will be TR 3-D PIV. Please see the Original Design Requirement List (section 1.2.2.1 items # 4 and 5 for more information on this design requirement.

3.3.7. Sizing the Test Bed

The test bed must be sized properly to meet the design requirements listed in items # 2 and 4 from the Original Design Requirements List (section 1.2.2.1). This means that the field of view of the cameras and the entrance and exit points of the laser sheet in the TR 3-D PIV system are at the core of the parameters governing the sizing of the test bed.

An additional design requirement of the test bed, as listed in item # 2 in the Design Requirements List (section 1.2.2.1), is minimization of edge effects. Several sources indicate that the appropriate distance one must be from the edge of the test bed to find flow with minimal edge effects ranges from 3 to 10 bead diameters [15].

3.3.8. Flow Straightening

To create a well-developed porous media bed flow with minimal edge effects flow straighteners are often employed. Effective flow straighteners for the range of velocities in which the test bed is expected to operate generally fall into the "honeycomb" category [16]. Other flow straightening techniques, such as diffuser plates, are inappropriate for the expected volumetric flow rates of the flow loop and will produce a high pressure drop affecting pump selection. See Appendix 9.1 for flow rate calculations.

When selecting a honeycomb flow straightener one must keep in mind the diameter and length of the honeycomb, the cell geometry, and the material of construction. The velocity entering the honeycomb length, and diameter of the cells determine whether or not the flow will be fully developed and laminar. See Appendix 9.3 for appropriate length and cell size equations and calculations.

Aside from determining how laminar of a flow can be expected on the downstream side of a flow straightener, the cell size is also important when considering retention of the beads. A cell size must be chosen that will not unduly restrict the flow and will support the beads without allowing the beads to clog the flow straightener. This consideration is more important on the downstream side of the test bed as the beads will be pushed in this direction by the fluid flow. Depending on the orientation of the test bed, either the downstream or upstream side will be called upon to support the mass of the beads as well. See Appendix 9.3 for cell sizing, material sizing, and other related equations.

3.3.9. Diffuser

A flow diffuser is needed to convert the flow through the flow loop pipes to a flow with an even volumetric flow distribution. Without a proper diffuser, flow separation in the diffuser is expected to develop. As with all systems, no diffuser can ever create a perfectly even volumetric flow distribution. Dr. Liburdy recommended a diffuser with an angle of 30° [17]. Diffusers will be used at both the top and bottom of the test bed to help minimize edge effects and reduce head loss in the flow loop.

3.3.10. Seeding Particles

To characterize flow through the porous media, seeding particles will be used to trace the flow. There are several different types commercially available including the following: polyamide, hollow glass spheres, silver coated hollow glass spheres, and fluorescent polymer particles with homogenous distribution. Several criteria must be taken into consideration when selecting seeding particles including: reactivity with working fluid, size of seeding particles, fluorescing wavelength, tendency to adhere to porous media and other surfaces, decay rate of the seeding particle usefulness (i.e.: when a particle no longer fluoresces brightly enough to be detected by the PIV equipment), availability, and cost.

3.3.11. Measurement

Appropriate measurement systems will be used to measure pressure drop, temperature, and flow rate across the porous media test bed. These are defined by the required variables to define a pore Reynolds number as shown in Appendix 9.1. Some considerations when selecting these instruments are: corrosive resistance, desired level of accuracy, and instrumentation mounting. Temperature measurements can be taken using a thermocouple. Pressure can be monitored by using a pressure transducer. Since there are many different configurations of the same type of pressure transducer the primary design considerations compatibility with the working fluid and with appropriate mounting capabilities. Lastly, the volumetric flow rate can be monitored by a flow meter. There are many different methods in measure flow rate which include: bubble, Doppler, transit-time, vortex, and magnetic methods. The selection criteria of the flow rate meter depends primarily on the fluid choice, disruption of fluid flow, and accuracy desired.

4. DESIGN SELECTED

The design group decided to proceed with Test Bed Design #2. This is a more robust test bed design which is expected withstand higher pressures than the alternative design. A complete drawing package and fabrication Bill of Materials (BOM) (see Figure P1) can be found in Appendix 11.1. A purchased part BOM can be found in Appendix 10.1. Specific components of the design are discussed below.

4.1. Hydraulic Design

4.1.1. Flow Loop Operation

The final design of the flow loop is depicted in the following figure (see Figure 6 below), and will have the following characteristics:

- 1. Reservoir will be positioned to keep pump flooded at all times.
- 2. Pump centerline will be below the working fluid level of the reservoir to ensure that pump is in a flooded suction state.
- 3. Flow rate will be controlled by the throttling valve, downstream of the test bed.
- 4. Discharge of the pipe will be above the working fluid level of the reservoir, ensuring free fall conditions to avoid the extra work required to pump against the reservoir surface elevation.
- 5. Pipe lengths are to be as short as possible that equipment locations will allow, in order to minimize the frictional head losses in the pipe.
- 6. The total change in elevation that the pump is to see is to be less that 10-ft, the maximum lift the pump can do.

With these conditions being met, the system should operate successfully without cavitation (see Appendices 9.4 and 9.5 for AFT Fathom output for results) within the flow rates.

Figure 6. Flow Loop Layout

4.2. Pump Selection

From the Original Design Requirement listed in 1.2.2.1, Requirement 7, and subsequent discussions with Dr. Liburdy [17], the test bed has been designed to operate for Reynolds number between 200 and 400. Corresponding flow rates to these Reynolds number have been determined to be between 12.2-gpm and 24.5-gpm (see Appendix 9.6 for calculations), which are the flow rates that pump selection is based on.

To determine the required amount of pressure head (dynamic head) that is required by the pump, and the discharge pressure (maximum system pressure), AFT Fathom, a hydraulic computation program, was used (see AFT Fathom output in Appendices 9.4 and 9.5). A summary of the required pump pressure, and discharge pressure from the Fathom output, can be seen in Table 1.

AFT Fathom Pump Operating Points							
Flow Rate, gpm	Dynamic Head, ft	Pump Discharge Pressure, psi					
9.9	46	34.1					
31.2	24.3	16.7					

 Table 1: Pump Operating Points

As indicated in Table 1, the total head that the pump must deliver is 46-ft, and the maximum pressure of the system is 34.1-psig. Therefore the flow channel must be designed to withstand this pressure, and the pump must be able to deliver this pressure head. As is implied by the flow rates presented in Table 1, the target Reynolds numbers will be met.

Another needed piece information to properly select a pump is required horsepower. The horsepower requirement for this pumping system was determined using two methods: an application of Bernoulli's equation (see Appendix 9.6), and, alternatively, from AFT Fathom (see Appendices 9.4 and 9.5). As stated in Appendix 9.8, the horsepower calculations based on Bernoulli's equation is not believed to be accurate. The ATF Fathom output is a much more reasonable number for the hydraulic system presented in this document. From the Fathom output, the required horsepower was determined approximately 0.25-hp.

The selected pump, based on the above criteria, will be a 0.5- to 1.0-hp, magnetic drive, centrifugal pump, operating between 10- and 40-gpm, delivering a pressure head of 10- to 50-ft; with the pump head material being polypropylene for chemical compatibility. The pump was oversized to provide a factor of safety in the pumping system.

4.3. Bead Selection

Based on several factors including pressure drop calculations (Appendix 9.1), availability of materials, and reaction of the working fluid to the beads and other index of refraction matched components, the project group selected 6 mm diameter borosilicate beads with an expected index of refraction of approximately 1.47. This decision is partially in response to Dr. Wood having 6-mm beads available for the project group's use which will realized a cost savings to the project. Due to slight variations in the production process of borosilicate beads, the index of refraction is expected to vary somewhat between different production runs but is not expected to cause insurmountable problems [10].

4.4. Working Fluid

The working fluid selected for this design is a solution of zinc chloride and water (60 wt% zinc chloride, 40 wt% water) that produces an index of refraction of 1.47, the same as the expected index of refraction for borosilicate [10]. However, zinc chloride solutions are acidic and highly corrosive to traditional engineering materials. The effects on the materials inside of the flow loop have been considered in the design process. Additional concerns, as listed in section 3.3.3, have also be taken into account.

4.5. Ductwork

The ductwork of the system shall be PVC pipe. This decision was driven by the design criteria listed in section 3.3.4, and by the selection of zinc chloride as the working fluid. PVC is inexpensive, readily available, and resistant to corrosion by zinc chloride [19].

4.6. Imaging Equipment

The imaging equipment to be used in this design, as discussed in section 3.3.6, was predetermined by the project sponsor and is TR 3-D PIV.

4.7. Sizing the Test Bed

The final cross section of the flow channel is 0.139-mm by 0.139-mm. This sizing was driven by the required number of bead diameters away from the imaging area and by pressure, flow rate, and head loss calculations. Back calculating the number of bead diameters needed for negligible edge effect places the number of bead diameters at 7.5. This number is well within Original Design Requirement #2. The length of the porous media bed is 280mm. This is as a result of conversations with Dr. Liburdy [17] and Dr. Wood [28] where it was indicated that a test section length of at least 250mm was desired.

Flow channel wall thickness is 30mm. This sizing is based on the ASME pressure vessel code [29, 30]. A large factor of safety was added to the final wall thickness to guard against failure will occurring through the walls. Appendix 9.9 details this calculation.

Bolt spacing and proper gasket design were driven by the ASME pressure vessel code [29, 30] and was conservatively determined to be 15mm based on discussions in the literature.

4.8. Flow Straightening

An ideal minimum length of honeycomb was calculated to be 17-mm (see Appendix 9.2 for calculation) to straighten the flow and reduce macroscopic flow disturbances, but consideration also had be given to the mass of the beads and the force that the pressure drop exerts on the honeycomb when the test bed is vertically oriented with flow traveling in a downward direction (see Appendix 9.9 for calculations). From these calculations, the honeycomb must support a final weight of 200-lbs. A potential supplier was contacted and it was determined that this load can be supported by the honeycomb if the thickness is greater than one inch. Therefore the thickness presented in this design was set at 30-mm. Additionally, polycarbonate was selected to be the honeycomb material for its strength and resistance to corrosion.

4.9. Sealants

Several sealants were reviewed by the design team including the following adhesives and gasket materials: Silicone, Neoprene, SBR, EPDM, Santoprene, Kalrez, Viton and PVC. The design team has selected neoprene as the gasket material for the design presented in this document. However, several other materials can be substituted. Selection of Neoprene was based on its chemical comparability with zinc chloride [27], its behavior as a gasket material, and its relatively low cost.

4.10. Window Sizing and Design

Many considerations had to be taken into account in the design of the viewing windows. The material selection of borosilicate glass was predetermined to be the same as the beads discussed in section 3.3.2. The sizing of the window height and width came from the constraints discussed in sections 3.3.5 and 3.3.6. The main factor that determined the width was that the TR 3-D PIV system requires a 100mm viewing area of the porous media to properly set up the camera view angles [31]. The thickness was determined using brittle plate theory, as shown in Appendix 9.10. A large safety factor was used in specifying the final thickness because the glass is believed to be the weakest component of the structure and the worst component to have catastrophic failure occur. Considerations of the working fluid hazards shown in Appendix 9.2 were also a reason in choosing the large safety factor.

4.11. Diffuser

As mentioned in section 3.3.9, the diffuser will have a 30° angle to mate the porous media test section with the rest of the flow loop. Appendix 11.1 includes drawings of the diffuser design. The diffuser will connect with the flow loop using a pipe flange and will bolt to the test section, being sealed with a neoprene gasket. This facilitates easy access to the test section for cleaning and other needs.

4.12. Seeding Particles

Although the seeding particles are an integral part of the TR 3D PIV experiment, the designs of the flow loop and test bed are not dependent on selecting a specific seeding particle. The project group has researched fluorescent dyes used in seeding particles to gain a general understanding of the design considerations for selecting a seeding particle. The concern of pump interference was considered but dismissed because the size of the particles is negligible to the functionality of the pump selected. Chemical compatibility of the seeding particles with the working fluid were considered and it was determined that particles made with glass should have no reaction with the fluid.

4.13. Measurement

Using the criteria of corrosion resistance (to materials equivalent to 316 stainless steel), 0 to 100° F operating temperature, 0 – 50 PSI, and differential measurement capabilities, a pressure transducer was selected with adequate capabilities. The selection of the thermocouple was limited by the ability to mount the temperature probe to an appropriate location on the flow loop. Based on this consideration, a simple pipe plug probe thermocouple was selected. Finally, since the flow rate measurements can be taken after the test section a rotometer with sufficient flow rate ranges, as discussed in section 2.1, and chemical resistance was selected.

4.14. Flow Loop Material Selection

As discussed in sections 3.3.3, 3.3.4, 3.3.5, and 3.3, all of the materials within the test section must be selected with the reactivity of the zinc chloride solution in mind. This eliminates using aluminum as it decays when in contact with zinc chloride. The chemical reactivity of steels with zinc chloride solutions is minimal but it is not impervious to the effects the fluid. Over time, discoloration or slight corrosion may occur. Most non-metal pipe materials such as ABS, High Density Polyethylene, UHMW, Nylon, Teflon, polycarbonate and polypropylene have excellent compatibility with zinc chloride and can be used over extended periods of time with no effects to the material properties [19]. Another factor in material selection is the water absorption of the previously mentioned plastics over time. Swelling of the plastics can cause structural instability, sealing issues, and change the ratio zinc chloride to water of the working fluid which would un-match the index of refraction. Strength of the material, availability of sizes, and cost were other factors used in the selection process. When all of the above were considered, two materials were selected for the test section. The project group chose to manufacture the test section walls using ABS plastic. ABS plastic has the highest strength of the plastics with no water absorption, and has no chemical reactivity with zinc chloride [27]. UHMW was selected to make the diffusers on the top and bottom of the test section. Selection of UHMW was driven by size availability. Because it comes in larger thicknesses, it can be machined to accommodate smaller ductwork sizes instead of using reducers to step the sizes down to the required ductwork size. UHMW plastic does not have the tensile strength of ABS plastic but it has the same chemical resistance and does not absorb water [27]. Since the diffusers have the largest wall thickness of the test section and are only tapped for large diameter bolts, UHMW will be adequate for use in the design presented in this paper.

4.15. Working Fluid Reservoir

The same decision criteria were followed for the reservoir as for the flow loop materials discussed in section 4.13. The size of the reservoir was determined to be five gallons. This will allows for the fluid level to be high enough to avoid dry suction conditions in the pump and be able to hold all of the fluid needed for the system. The reservoir selected has fittings preinstalled to easily attach to the system, and prevent leaking. In addition, the orientation of the reservoir should be such that the pump is always in a flooded state regardless of pumping status. This will prevent cavitation in the pump during operation.

5. COST REDUCTION

Several possible design modifications were considered by the project team to modify the design to reduce budgetary pressure. The design modifications discussed in the below sections were never implemented in the paper design due to a lack of funding. While the measures discussed below will certainly reduce cost, they can not be expected to drive costs to zero. Several additional design modifications are also discussed in this section which, while not being strictly within either the Original Design Requirements or Final Design Requirements, are potentially desirable for a more functional device.

5.1.Increased Bolt Pattern Spacing

The overall cost of the system can be reduced by increasing bolt spacing on the pressure seals. The current design spacing of 15mm was selected to conservatively guarantee good seals in the test section. Bolt spacing can potentially be increased but this must be investigated further to assure that the system will still maintain a positive seal.

5.2.Remove Intro-Serts

Intro-Serts (see Appendix 9.12 Figure 9.12.23 for datasheet) are included in the design presented in this document to give the design the ability to robustly withstand repeated assembly and disassembly. Intro-Serts are threaded metal inserts designed to be thermally welded into plastic to replace directly threaded holes in plastic. Removing the Intro-Serts from the design will save a significant amount of money but will also significantly limit the number of times the test section can be assembled and disassembled before threads begin to fail. The cost of the Intro-Serts can be seen in Appendix 10.1.

5.3.Use Permanent Chemical Seals

Rather than using removable gaskets and bolts, the entire system might be reasonably glued together using chemical solvent welding techniques. Doing this will save significant machining time and will negate the need for Intro-Serts and gaskets. However, this will also make the test section significantly harder to access for cleaning and maintenance.

5.4. Machine Borosilicate Window

As can be seen in the drawings presented in Appendix 11.1, the interior of the test section does not have an entirely flat and smooth surface. The flatness of the surface is disrupted by the inset borosilicate windows. It is possible to get borosilicate glass machined, within reason, to whatever pattern one desires. A potential pattern that was investigated but discarded as too expensive by the project team was to machine a piece of borosilicate so that the window would come flush with the inside of the test section. Aside from an increase in expense, a minor redesign of the wall sections containing the windows will be necessary. While the redesign is minor, it absolutely must be done prior to machining of the walls. This modification has the potential to significantly improve the quality of data from experiments conducted on the test section.

5.5. Select Alternative Pump

As additional Reynolds numbers of interest make themselves apparent, the pump presented in this document may prove inadequate for the job. When this occurs, a pump properly sized for the new desired Reynolds numbers will be selected.

5.6. Use In-House Measurement Equipment

The Mechanical Engineering Department at Oregon State University has a small inventory of used measurement equipment which might become available for this project. A survey of the potentially available equipment has yet to be completed. The same selection criteria as presented earlier in this document will apply when qualifying existing measurement equipment for use on this project.

5.7. Select Alternate Throttling Valve

An alternate valve can be selected against the high density polyethylene diaphragm valve. One alternative is an all-brass or all-bronze ball valve commercially available at hardware stores. This will significantly reduce cost but, as is noted in several other sections of this document, metal, when in contact with zinc chloride, can be expected to corrode over time.

5.8. Drainage Valve and Tank

If complete drainage of the flow loop is to occur on a regular basis, a drainage valve and catchments tank may be necessary to properly drain and store the zinc chloride solution. This will be a relatively low-cost and easy modification to make if such a system is desired.

6. FABRICATION

Due to a grant not coming through as expected, the team was left without funding at the beginning of the second half of the course for which this project was conducted. The following sections present the team's original fabrication plan, cost reductions which were created in an attempt to construct a prototype with reduced funding, initial proof-of-concept plans, modified proof-of-concept plans, and the final proof-of-concept plans which were carried out. This section concludes with a re-design analysis for further cost reduction based on fabrication information.

6.1. Original Fabrication Plan

The following Original Fabrication Plan sections are presented as they originally appeared in the Design Proposal report. Because nothing was constructed, this section remains relevant and has been kept without modifications.

6.1.1. Cost Vs. Budget

6.1.1.1. Cost

The maximum cost of the entire flow loop, test bed, porous media, and working fluid is approximately \$6800.00. A full layout of the estimated cost of materials is shown in Appendix 9.8. This cost does not include labor required to manufacture the test section's walls, gaskets, or diffusers. The cost of the media and fluid has been included in the amount shown above. Since these resources may be available from other Oregon State Universities departments the cost has also been totaled with out these components. The total cost without the media and fluid is approximately \$3,500.00. In addition to the two totals shown above, another set of costs is shown in Appendix I with the same criteria as above except without the cost of the Intro-Sert (see Appendix 9.11, Figures 9.11.10 and 9.11.11 for more information on Intro-Serts) inserts used to fasten the test section walls together. These inserts are expensive but with the pressure and material considerations mentioned throughout this document, they will help to ensure secure connections of the sides and diffusers over many assemblies and disassemblies. These costs would be approximately \$5,900.00 and \$2,600.00, respectively. The table presented in Appendix 10.1 also shows the cost of various components grouped into the categories of: test section, flow loop, measurement equipment, and media and fluid.

6.1.1.2. Budget

Since the project was never given an official budget, the project team attempted to select components that are sufficient to make a quality test section that can be used thoroughly and without complication. Also, in considering component selections, cost effective parts that are adequate for their intended uses were selected over higher-priced but more feature-rich substitutes. Appendix 9.12 shows other options for test bed materials so that, in case a budget is given at a future date, alternative materials can be selected if desired. In addition to the vendors listed in Appendix 9.12 and 10.2, others were research but not included due to excessively high prices or poor quality of the products and services offered. Additional vendors have been contacted but at the time of publication of this document, quotes had not yet been received. Due to the slow response of some potential vendors, some material and component costs may decrease.

6.1.2. Purchased Components

The purchased components of the test section are shown in Appendix 10.2. The test section sidewall cost is the least expensive combination of available materials and sizes from the lowest cost of three suppliers. The material selection of the test section walls and diffusers were analyzed extensively in respect to properties, availability of size, and cost as shown in Appendix 9.12 and discussed in multiple sections of this document. Some minor items needed for assembly have been left out of the spreadsheet in Appendix 10.1 such as glues, clamps, and extra sealant that will be needed for assembly. These items are relatively inexpensive and, for the most part, available to the project group through the Department of Mechanical Engineering at Oregon State University's machine shop.

6.1.3. Fabricated Components

The main manufacturing operations in the construction of the test bed will be the milling of the four test section walls, and the diffusers which mount on each end of the test section. To machine these complicated components a CNC milling program to create the code needed for the CNC mill will be used. This should reduce the time needed for manufacture dramatically and greatly reduce the chance for error in machining. Also, the gaskets will need to be cut out of raw gasket stock. This will be done by creating stencils of the desired shapes and cutting the outlines into the gasket stock. The holes in the gasket will then be cut using a punch. The Intro-Sert holes will need to be drilled on a mill for accuracy (possibly with another CNC milling operation) and then installed using a thermal installation kit, such as the one presented in Figure 9.11.23 of Appendix 9.11. Assembly of the test section can proceed once the aforementioned components have been manufactured, and the rest of the purchased parts have arrived. The assembly of the flow loop will require a layout of the area in which the testing will occur. Installation of the flow loop will require minor drilling, cutting and assembly of the pipe sections into the flow loop.

6.1.4. Sourcing and Lead Times

All component sourcing information is given in Appendix 10.2. Vendors were selected by product line, availability of components needed, and price. Multiple vendors were found for as many items as possible, but only the most qualified vendors appear on the list. Also, the vendors listed in the Appendix 10.2 were the ones that were able to confirm lead times and quoted prices. Product codes and inquiry numbers are also listed in Appendix 10.2 to facilitate quick ordering for the next stage of the project. In evaluating the lead times required for the project it was determined that ordering of the parts would have to occur six weeks prior to assembly of the test section. The viewing window glass, the storage tank, flow straightener, and plastic sheeting would require longer than a week lead times. The viewing window is the critical path item because it has to be manufactured to design specifications. This process, combined with shipping, can take up to six weeks. If orders are placed prior to the second week of December, all purchased parts and raw material is expected to be received on-time to allow for completion of fabrication and testing by March.

6.2. Fabrication Outcome

6.2.1. Fabrication Cost Reduction

At the beginning of the second half of the course for which this report was prepared, the team was not sure if a prototype would be able to be built due to lack of funding. The money that was going to fund the project would have come from federal grants. Since these grants did not materialized, the team continued on by analyzing the paper design for additional cost reductions to make the prototype inexpensive enough to build. The team started by analyzing the bill of materials to see if there were any components that could be changed to lower cost. One such component was the borosilicate window. Originally, the cost for the two windows was \$380.00. Some of the cost of the window came from the machining associated with specifying a thickness of 20mm. After changing the wall design to fit a more standard window thickness, the group was able to reduce the cost of the two windows down to \$270.00. Another way the group found to reduce the cost was by eliminating the insert fasteners that securely hold a bolt into plastic. Eliminating this saved an additional \$860.00. The group looked for more avenues of cost reduction but was only able to come up with the reductions above. Even with the \$970.00 cost reduction, the prototype still cost \$5,787.00. This was still too much for the project sponsor to support, so the group turned to a proof-of-concept model that could allow the team to fulfill the requirements for the second half of the senior project course.

6.2.2. Proof of Concept Considerations

Since the team could not construct the original 3D flow cell, the team began to look at ways to prove that the design of the 3D flow cell satisfied the Original Design Requirements given by the sponsor. Most of the requirements were satisfied by putting the components stated by the requirement into the design. The sponsor informed the team that there was a 2D flow cell recently constructed (shown in Figure 7) and that we could use the flow cell to verify remaining requirements.

Figure 7: 2D Flow Channel

The requirement involving the boundary conditions was the main focus of the team's proof-ofconcept experiment since the 3D flow cell design compensated for boundary effects by using preexisting literature recommendations on previous experiments done of similar nature. There were no concrete formulas on which to base the paper design so the team followed what had been done in the past. The other requirement tested was the field of view that is required for adequate optical access. Both of these requirements could be tested during the same experiment as the team planned to use the same camera during their experiment as the one that would be used with a 3-D flow cell in a TR-3D-PIV experiment.

6.2.3. Proof of Concept 1

Porous Media Test Bed Final Report

To prove that the team's design would meet the requirements that could be tested, the team and the sponsor devised a dispersion experiment involving a dye injection system that emitted a pulse of dye into the flow cell. This pulse could then be tracked through the flow cell and the team could determine the area increase of dye as it flowed through the cell. The goal was to see where, after a certain percentage of growth, the outer horizontal boundaries of the dye would be affected by edge effects from the walls of the flow cell. To modify the 2D flow cell the team would have to drill a hole into the flow channel an inch below the inlet. The drawing for this modification is shown in Appendix 11.2.

To be able to modify the 2D flow cell the group was asked to provide a modification plan and procedure which is presented below.

- 1. Carefully disassemble the 2D flow channel.
- 2. Remove all components and clean front polycarbonate window.
- 3. Drill and tap window as shown in Figure 3.
- 4. Insert adaptor and attach back check valve.
- 5. Reassemble 2D flow channel and fill with water.
- 6. Attach pump and test flow channel for leaks (modify if necessary).
- 7. Check flow rates and test run of dye in flow channel.
- 8. Drain water and refill with zinc chloride solution.

Also, the team was asked to create a parts list of the plumbing necessary to inject the dye into the flow cell (shown below in Table 2). The team researched methods and materials for injecting the dye. The below design includes all materials necessary to construct a dye injection system for the existing 2-D test setup. It should be noted that the price quotes for parts coming from Value Plastic are for quantities of 100. In all but one case, only one part was needed. Value Plastic does not sell in quantities fewer than 100 however; one team member had access to almost all of the required components through contacts at HP. Additionally, some parts might have been available within the mechanical engineering department and Value Plastic could have been convinced to provide samples. McMaster also stocks these parts on an individual basis.

The design (shown in figure 8: dye injection system) is the safest and least expensive design the team created to prevent the potential of backflow of zinc chloride into the syringe. If funds or parts could not have been attained in a timely manner, a less desirable system consisting of a brass or stainless steel 10-32 thread to male hose barb, which can be found in the mechanical engineering machine shop, some 1/8" ID hose also found in the mechanical engineering machine shop, some 1/8" ID hose also found in the mechanical engineering machine shop, and a syringe acquired from Student Health Services, would have been used. This system was not recommended, however, as the metal hose barb fitting will corrode when in contact with zinc chloride and no check valve would have been present to prevent backflow of zinc chloride into the syringe. The less-than-desirable system could have been closed off by simply pinching the hose to prevent fluid backflow. However, again, this was not ideal.

	Table 2: Dye Injection System Parts List								
Ref.	Name	Vendor	Part Number	Price					
Number									
1	10-32 Male hose barb	Value	B-1	\$14.00 / 100					
	(white nylon)	Plastic		parts					
2	$1/8$ " ID $\frac{1}{4}$ "OD PVC hose	Value	PV00-3062C	\$13.86 / 100 ft					
		Plastic							
3	Female Lure 200 Series	Value	FTL230-9	\$16.00 / 100					
	to male hose barb	Plastic		parts					
	(Polycarbonate)								
4	Check-valve rated to	Value	VPS5401068N	\$73.00 / 100					
	30PSI back pressure	Plastic		parts					
	(Polycarbonate)								
5	Male Lure 200 series to	Value	MTLL230-9	\$18.00 / 100					
	male hose barb	Plastic		parts					
	(Polycarbonate)								
6	6cc Syringe with Lure	McMast	7510A652	\$7.15 / 10 parts					
	fitting	er-Carr		1					

 Table 2: Dye Injection System Parts List

Figure 8: Dye Injection System (test loop not show but assumed left of item 1)

6.2.4. Proof of Concept 2

The evening before the modification of the 2D flow cell was to take place concerns were raised about the usefulness of the 2D flow cell after the team had drilled a hole into it and had finished experimentation. Also, the procedure the team proposed included the disassembly of the flow cell which raised another issue. The flow cell was constructed with an expensive Teflon gasket that is not reusable. If the team were to take the cell apart, it would be expensive to put back together. After some discussion, it was decided to not do the modifications described in section 6.2.3 but to instead make a dye loop and inject the dye directly into the inlet tube. This would be less intrusive on the flow cell and give the similar result. Since there was no time to order parts and no budget to do so, the Environmental Engineering department offered to lend the team the necessary equipment to make a dye loop, and anything extra that was needed would be provided by the sponsor.

The new Proof of Concept model was relatively simple. The fluid would be pumped through the system from a reservoir, to the flow cell and into a discharge bottle. The tubing in between the pump and the flow cell was modified to incorporate a dye loop controlled by two valves. In one position, the fluid would move normally through the system but in the other position a tube filled with dye would become part of the flow loop. This dye would then move into the flow cell and allow the team to take pictures of how the fluid moves through the flow cell. Lastly, the fluid would then continue out of the flow cell and into a discharge bottle. Since the fluid would then be

contaminated by the dye, it could no longer be reused. The setup of the new proof of concept is shown below in Figure 9.

Figure 9: Proof of Concept 2 Diagram

The materials for the loop are shown below in Table 3. The team used 1/8" plastic tubing. Each of the components was connected using $\frac{1}{4} \times 20$ screw fittings with camp rings. The valves, fittings, and clamp rings were made of high-pressure PVC plastic.

ltem #	Description	Qty.
1	discharge - 150 mL media bottle	1
2	2D - flow cell	1
3	dye loop (1/8" tubing - 0.5 mL volume)	1
4	3 way L valves	2
5	peristaltic pump	1
6	reservoir - 150 mL media bottle	1

 Table 3: Proof of Concept 2 Components

6.2.4.1. Construction Issues

The main issues that arose during construction of the proof of concept were that there was little time and money to get a proof of concept completed. The construction and testing plan was not finalized and agreed to by the project sponsor until the very end of the period dedicated for the aforementioned activities. As the proof-of-concept evolved into the final version, the team had to adapt very quickly in order to stay on top of new proof-of-concept iterations. In regards to time, there was only a small window in which the team was allowed access to the lab to conduct the experiment. The team, understandably, low in priority for lab access considering there were multiple graduate students conducting experiments in the same area. Because of this, the setup and assembly of the experiment had to be completed quickly.

Another unexpected issue was that the team had originally intended the direction of flow in the flow cell to be from the top to the bottom. The team had set up the flow cell with this orientation and quickly noticed that the flow cell was not filling with fluid. The group had tried to raise the discharge reservoir above the flow cell in hope that it would fill but it remained unchanged. To

correct the problem, the team modified the setup to change the flow of the fluid from bottom to top. This corrected the problem and the team was able to continue.

6.2.5. Cost vs. Budget

Most of the components in Proof of Concept 2 were given to the team to use or were already available in the lab due to previous experiments with the 2D flow cell. The expense incurred was as a result of the team assuming that there would be a reservoir and discharge bottles available in the lab. Since all the bottles had seeded particles in them, the team had to come up with alternate containers. The team considered some inexpensive, basic containers but after a few test runs with water, it was apparent that the team would need some secure way of getting the fluid into the bottle without any spillage occurring. The team approached the sponsor with this problem and was granted the appropriate funds, discussed in section 8, to procure two media bottles. With this being the team's only expense, the team was able to complete construction of the proof of concept and gather the needed data.

6.2.6. Re-Design Analysis

Due to the limited scope of the proof-of-concept, and the fact that no major fabrication issues directly related to the design were encountered, the team assumes that there will be no major redesigns required of the paper design before a prototype can be built in the future. To the best of the team's knowledge, the paper design and proof-of-concept fulfill all of the Final Design Requirements, listed in section 1.2.2.2. A complete analysis of design requirements is given in section 7. The 3D flow cell and flow loop will do what is expected of it to best of the team's knowledge. The testing of the requirements confirmed this. However, since the cost of the 3D flow cell is substantial, the reevaluated cheaper version of the flow cell, presented in earlier sections, could be used. The original version of the 3D flow cell was designed to be structurally sound and durable in a variety of rigorous conditions. A reduced cost version may accomplish a TR-3D-PIV test but not near the upper Reynolds numbers of the original paper design. According to the team's understanding, the higher the Reynolds numbers that could be achieved would result in more substantial research that can be done. Therefore, any significant redesign should only occur with this in mind.

7. TESTING

Due to previously discussed budgetary issues, the original testing plan had to be altered to cope with no prototype being available. The Original Testing Plan, as presented in the preliminary design report, is given without major edits with the hope that, when this project is actually constructed, the plan will be of use. Modified testing plans are provided with the original modified plans and the final modified plans presented for completeness. Data analysis and conclusions are found at the end of this secetion.

7.1.Original Testing Plan

7.1.1. Evaluation of Requirements

The following sections contain the plans to evaluate the Original Design Requirements laid out in section 1.2.2.1 of this document. Many of the design requirements can be tested either by a portion of the design being present or not. Other requirements are more subjective while others can be objectively judged and qualified. The evaluations listed below are for the Original Design Requirements but are also applicable to the Final Design Requirements.

7.1.1.1. Evaluation of Design Requirement #1

Proper design can be considered upon final assembly by performing functionality tests on the system, for leakage, flow loop functionality, and measurement equipment functionality.

If this test fails, appropriate modifications to the faulty subsystems will be made.

7.1.1.2. Evaluation of Design Requirement #2

Proper design can be considered upon final assembly by performing functionality tests on the system, for leakage, flow loop functionality, and measurement equipment functionality.

If this test fails, appropriate modifications to the faulty subsystems will be made.

7.1.1.3. Evaluation of Design Requirement #3

This requirement can be determined upon final assembly, by confirming that the appropriate equipment for all measurements of interest have been calibrated and installed correctly.

If this test fails, major redesign and remachining of the test bed will have to take place.

7.1.1.4. Evaluation of Design Requirement #4

Evaluation of the optical access of the TR 3D PIV equipment will have to come from the direct results of the experiment. The cameras and laser will have to be positioned in the best location that the section will allow. If this is not adequate then a major redesign of the test section will have to occur.

If this test fails, major redesign and remachining of the test bed will have to take place.
7.1.1.5. Evaluation of Design Requirement #5

Due to availability of index of refraction testing equipment that is currently owned by Oregon State University the project team will be able to measure the index of refraction of the viewing window to make sure it was properly manufactured. Also, the project team will be able to evaluate the glass beads to check for air bubbles and unusable indexes. The project team expects a 20% drop out ratio of bad beads from similar experiments done with the same manufacturer of beads [28]. Lastly, index-matching equipment can be used to accurately mix the zinc chloride solution to the same index of refraction as that of the viewing window and beads. If this test fails, replacement viewing windows, borosilicate beads, or working fluid will be required.

If the root cause is determined to be the working fluid, close attention will have to be paid to likely sources of contamination in the flow loop. If any sources of contamination are found, they will be removed and the fluid replaced.

7.1.1.6. Evaluation of Design Requirement #6

Testing for vibrational isolation of the test section from the pump will have to occur after the flow loop has been setup. A separate structure for the pump with isolators to reduce vibration has been considered in the preliminary designs of a support structure for the pump, flow loop, and test bed. The only complication in having a separate pump structure would be that the height sequence of the reservoir above the pump would have to be maintained. A complete support structure design will have to wait until the area of the experiment can be laid out with the placement of the test section clearly defined.

If this test fails, additional vibration damping equipment will be selected and installed.

7.1.1.7. Evaluation of Design Requirement #7

Testing the flow loop for operation in the quoted range of Reynolds numbers requires that the flow rate and differential pressure transducers have all been calibrated against instruments of known error, or by appropriate calibration method, e.g. catch and weigh procedure for flow rate, and that the porosity of the porous media, working fluid viscosity, etc. have all been experimentally determined as well. Subsequently, appropriate flow rate measurements can be taken at different settings and Reynolds number calculations can be performed to compare against the theoretical calculations for accuracy.

If this test fails, the entire flow loop will have to be reevaluated for the source of the error and either remanufactured, replaced, or repaired to provide the correct designed-for Reynolds number.

7.1.1.8. Evaluation of Design Requirement #8

Testing the safety of the test bed requires that the bed brought up to pressure and run through several cycles of pressurization and depressurization to check for leaks and catastrophic failure. Initially, this will be done with pressurized air. Once a positive seal has been demonstrated, the test section and flow loop will be loaded with water and run through several cycles. Pressure checking with zinc chloride will only be performed after seal integrity has been confirmed using

air and water. Additionally, zinc chloride will not be introduced into the system until all of the materials used in flow loop construction have been physically checked with zinc chloride to confirm that material compatibility indicated on material datasheets matches the real world.

If this test fails, a root failure cause analysis will be performed and replacement, remanufacture, or redesign of the failed component(s) will be conducted as appropriate.

7.1.1.9. Evaluation of Design Requirement #9

Control of the pressure and flow rate of the system can be tested by changing the pump speed and operating the throttling valve. This can be verified by reading the pressure and flow rate meters. Temperature is not controlled in the design presented in this document beyond natural cooling present in the system. Temperature change will be monitored with the thermocouple over a period of time to determine if excess heat is introduced into the system by the pump or other sources. If this is the case, an appropriate thermal control scheme will be selected and installed in the flow loop.

If this test fails, reanalysis of the flow loop control will be performed and deficient components will be modified or replaced.

7.2. Modified Testing Plans

Due to previously discussed issues, the testing plan was modified to be conducted on a 2-D flow cell. The information presented below reflects the two iterations of the modified testing plan and also includes relevant data on dye testing.

7.2.1. Dye Testing

Before any testing was performed by the team, verification of an appropriate dye had to be determined. The different types of dispersion that are expected to occur are molecular and turbulent. The turbulent dispersion of the dye should be minimal before the dye enters the porous media because the inlet is located in the media. Molecular dispersion rates were controlled by the type of dye the team selected. The dye must be insoluble in water yet viscous enough for the team's needs. The team researched this and found a category of dyes called "lake dyes" that are used to color fats and oils. This would have been ideal but the dye could not be acquired prior to testing due to long lead-times out of India. Since it was not available, the team found multiple dyes that appeared reasonable to test. A static test was conducted to determine if the dyes would meet the needs of the experiment. This was done by placing a drop of dye in a container of water and measuring dye spread (difference in area) vs. time. With this information, the team could measure how much effect molecular dispersion would have on the experiment.

The three types of dye that the group tested were a standard green food coloring, a water insoluble paint, and the same paint mixed with a thinner mixed in. The food coloring was the best substitute for the "lake dye" but is for more general purposes. The oil paint was selected because of its insolubility in water. The reasoning for the paint with thinner mix was that the paint might be too viscous to flow through the media properly.

Porous Media Test Bed Final Report

In each experiment the dyes were dropped into a container of water and pictures took every 8 seconds. Figure 9 shows the food coloring entering into the water and forming a slightly growing cloud. Since the time between pictures was approximately as long as the time it took a particle to travel though the 2D test cell, the group really only focused on the first two pictures. The difference between them seemed minimal, since there was some dispersion effect by the droplet entering the water.

Figure 9: Food Coloring Dye Test (8 second time intervals from left to right)

The second dye experiment was done using the oil paint shown in Figure 10. The paint was less dense than the water since it floated on top and could cause an additional force to act on the dye in the experiment. The paint had another problem that occurred that showed up while testing. It stained the cup heavily and could not be rinsed out even though it had only been in the container for less than a minute. If the paint were to be used in the experiment, it may stain the entire flow cell and render it useless for further experimentation.

Figure 10: Oil Paint Dye Test (8 second time intervals from left to right)

The third dye experiment was done using the dye and thinner mix shown in Figure. It was apparent as soon as the dye hit the water that it would not be adequate for the experiment. The dye instantly spread over the top of the water and again stained the container. The thinner lowered its viscosity dramatically but did not reduce the paint's ability to stain the container.

Figure 11: Oil Paint with Thinner Dye Test (8 second time intervals from left to right)

The food coloring was the best choice after looking at the results of the testing. Even though there was some molecular dispersion taking place, the time it took for a significant dispersion to occur was larger than the time for the dye to pass through the flow cell. Therefore the molecular dispersion of the food coloring was inconsequential and will be used in the experiment.

7.2.2. Intermediate Testing Plan

The below testing plan was presented to the project sponsor and is included in this document for completeness. While modifications were made to this testing plan, which are discussed later in this section, the majority of Intermediate Testing Plan was adapted and used in the Final Testing Plan. Tenses have not been changed to reflect the original testing proposal.

7.2.2.1. Abstract of Testing Plan

The design team has designed a 3D flow channel to exhibit flow characteristics inside of porous media based on the most current porous media literature; however, since construction of the 3D flow cell is not feasible at this time, an existing 2D flow cell will be used to establish validation of select design requirements.

7.2.2.2. Background

In the design phase of the project, the design team proposed a flow cell design to facilitate the TR-3D-PIV equipment to construct 3D images of fluid flow in porous media. One of the main constraints that the team chose was that for edge effects to not affect the data collection area in the porous media; the viewing area had to be 3-10 bead diameters away from the edges of the flow channel. This assumption constrained multiple areas of our design and the verification of the proper data collection needed will justify the paper design and will be adequate for its intended purpose.

7.2.2.3. Experiment Design

To provide a quantifiable result that will provide an area away from the walls in which pictures can be taken, with no edge effects present, the team purposes to do a flow channel-dye experiment. In this experiment the design team will insert dye into the flow channel and observe the dispersion effects. The goal is to measure the amount of dispersion that takes place at different Reynolds numbers and record when and how edge effects occur in the flow. In doing this the team hopes to provide an area that can be used to characterize flow characteristics in the flow channel without edge effects. Once this information about the 2D flow channel is obtained the team can then extrapolate the edge effects to the 3D design. This should either valid our design or show the team how and where mistakes were made.

To record the data the team will need to use a camera to take pictures of how the dispersion is taking place and measure its rate before edge effects take place. With the pictures the team can then determine the lateral dispersion verses the flow direction. There are two different insertion methods the team wants to test. One is to use a continuous stream of dye to see the general flow characteristics and record an overall rate of dispersion. The other method would be to use a pulse of dye to see how a particle like fluid would move through flow channel. The team would then measure the lateral expanding area vs. the flow velocity to get an area increase vs. time. Once these rates of dispersion are mapped for different values of Reynolds numbers the team can determine an area where the observations should be taken.

7.2.2.4. Experiment Procedures

Once the hardware is in place and ready for testing, the will then begin the experiment. During the experiment the team needs to gather a series of pictures taken at different rates as we increase the Reynolds numbers. Table 4 outlines the flow and picture rates per Reynolds number.

Re#	Q (m^3/s)	Q (mL/min)	Vpore (m/s)	Tpore	Picture Rate (pic/s)	Vmacro (m/s)	Tmacro	Picture Rate (pic/s)
100	8.60E-06	516	0.0667	1.14	8.75	0.02001	3.81	2.6
150	1.30E-05	780	0.1	0.76	13.12	0.03	2.54	3.9
200	1.70E-05	1020	0.133	0.57	17.45	0.0399	1.91	5.2
250	2.20E-05	1320	0.1667	0.46	21.88	0.05001	1.52	6.6
300	2.60E-05	1560	0.2	0.38	26.25	0.06	1.27	7.9
350	3.00E-05	1800	0.233	0.33	30.58	0.0699	1.09	9.2
400	3.40E-05	2040	0.2667	0.29	35.00	0.08001	0.95	10.5

Table 4: Estimated Rates for Experiment

Using Table 4, the design team can set the injection pump to deliver 0.5 mL of dye at half of the picture rate per Reynolds number. The picture rate was calculated to give the team ten pictures of the dye as it passes through the working area of the flow channel. This area is located below the delivery hole down to the section where the channel begins to narrow.

7.2.2.5. Materials

The below design (Figure 12, Table 5) includes all materials necessary to construct a dye injection system for the existing 2-D test setup. It should be noted that the price quotes for parts coming from Value Plastic are for quantities of 100. In all but one case, only one part is needed. Value Plastic doesn't sell in quantities fewer than 100 however; one team member most likely has access to almost all of the required components through contacts at HP. Additionally, some parts might be available within the mechanical engineering department and Value Plastic might be convinced to provide samples. McMaster also stocks these parts on an individual basis.

The below design is the safest design to prevent the potential of backflow of zinc chloride into the syringe. If funds or parts cannot be attained in a timely manner, a less desirable system consisting of a brass or stainless steel 10-32 thread to male hose barb, which can be found in the mechanical engineering machine shop, some 1/8" ID hose also found in the mechanical engineering machine shop, and a syringe acquired from Student Health Services. This system is not recommended, however, as the metal hose barb fitting will corrode when in contact with zinc chloride and no check valve will be present to prevent backflow of zinc chloride into the syringe. The, less-than-desirable, system can be closed off by simply pinching the hose to prevent fluid backflow. However, again, this is not ideal.

	Table 5: Dye I	ijecuon sysi	EIII I al 15 LISI	
Ref.	Name	Vendor	Part Number	Price
Number				
1	10-32 Male hose barb	Value	B-1	\$14.00 / 100
	(white nylon)	Plastic		parts
2	1/8" ID ¹ / ₄ "OD PVC hose	Value Plastic	PV00-3062C	\$13.86 / 100 ft
3	Female Lure 200 Series to male hose barb (Polycarbonate)	Value Plastic	FTL230-9	\$16.00 / 100 parts
4	Check-valve rated to 30PSI back pressure (Polycarbonate)	Value Plastic	VPS5401068N	\$73.00 / 100 parts
5	Male Lure 200 series to male hose barb (Polycarbonate)	Value Plastic	MTLL230-9	\$18.00 / 100 parts
6	6cc Syringe with Lure fitting	McMast er-Carr	7510A652	\$7.15 / 10 parts
1				6

 Table 5: Dye Injection System Parts List

Figure 12: Dye Injection System (test loop not show but assumed left of item 1)

7.2.2.6. Data Collection

During the experiment, pictures will be taken, as outlined in the procedures section. After the pictures are taken the team can then gather the dispersion into quantifiable rates. The data that will be gathered are a series of ten pictures per Reynolds number. These will be taken with the existing digital camera equipment in the lab. The team will attach an appropriate scaling in the field of view of the camera so that size can be analyzed. Since the team doesn't know exactly how the dye will interact in the porous media, the team will test the expected injection rates during the modification test noted in the hardware modification section. During this the team will check for spacing of the dye between injections so that a dispersion effect can be seen in the direction of the flow channel when the pictures are taken.

7.2.2.7. Analysis

Once the team has the pictures from the experiment we can measure the amount of dispersion that occurs in the direction of the flow and the direction perpendicular to the flow. The team can take the average growth of the dye in each direction and compare it with the previous pulse. This data can give the team a dispersion rate in each direction as it progresses through the media with time. The team can show the details of how this dispersion takes place by graphing the velocity of the flow vs. the perpendicular dispersion distance. Another graph that would be useful is the flow rate vs. the velocity in the perpendicular direction. This would show how the increase in Reynolds numbers affects dispersion in the media. Also, during this experiment we

can see where edge effects are occurring by observation of different flow characteristics. Once all of the dispersion rates are clear the team can then evaluate the proper viewing area that is in the dispersion range with no edge effects.

7.2.2.8. Conclusion

This experiment will show that the design requirements for the team's 3D flow channel were met and that, if it were built, the data gathered would be in accordance with what was intended. By interpolating the results of the 2D experiment into the team's 3D design for a porous media flow channel, the team will be able to show the paper design is able to gather the information needed for the TR-3D-PIV experiment. One way it will prove the team met requirements is if the selected viewing area falls in the dispersion region of the 3D flow channel then it must be in the inertial flow regime. The team will also be able to classify the boundary effects and show that the paper design viewing window is within them. Lastly, by doing this experiment the team will be able to see the abilities of the camera and if the paper design can accommodate them.

7.2.3. Final Testing Plan

The testing plan outlined in section 7.2.2 was rejected on the premise that the hardware modifications were too extensive, and that the cost to reassemble the flow cell would incur a cost of a new gasket that was deemed unnecessary. Therefore the testing plan was modified yet again in order to minimize the physical modifications of the flow cell and cost.

However since the testing plan has been modified numerous times and was redesigned to be performed on an existing 2D flow cell, the number of design requirements that can be validated through testing are minimal. The actual design requirements that can be validated by testing are Design Requirements #2 and #4 of section 1.2.2.2. Also, due to equipment limitations, Reynolds numbers of 200 and above could not be achieved, thus Design Requirement #6 of section 1.2.2.2 was born and the desired flow regime was changed to the inertial realm. Other design requirements, as can be seen in section 1.2.2, were dropped from the list of Final Design Requirements (section 1.2.2.2) due to only a 2-D flow cell being available.

7.2.3.1. Experiment Design

The motivation behind this test is to provide validation of the 3D flow cell designed around the design requirements as outline in section 1.2.2.2. As stated before, the numerous changes to the original testing plan has limited the scope of testing to two design requirements (see section 7.2.3).

The data for this test is gathered non-intrusively, but injecting the dye into a bypass line in parallel with the main flow line, with images captured by a commercially available camera. In this test the existing 2D flow cell was modified according to section 6.2.4 *Proof of Concept 2*. Pictures were captured at a rate 1 picture per second and analysis for a limiting value of horizontal dispersion.

7.2.3.2. Procedure and Data Collection

In order to gather the relevant data to verify design requirement #2 and #4 of section 1.2.2.2, the following procedure was executed:

- Modify flow cell loop according to section 6.2.4
- Fill the bypass line with 0.5-mL of dye, and install on bypass valves.
- Assign the pump to the first flow rate of Table 6 below, and start pump.
- Ready the digital camera and start pictures sequencing.
- Actuate valves to bypass line with dye.
- Once dye has sufficiently dispersed in flow cell stop camera, pump and return bypass valve to original position.
- Download pictures to local computer.
- The above procedure was repeated for each subsequent flow rate shown in Table 6.

Q	Q	Reynold's	Velocity	Time	Pore Picture	Velocity	Time	Macro Picture
(mL/min)	(m^3/s)	# pore	pore	pore	Rate (pic/sec)	macro (m/s)	macro	Rate (pic/sec)
(1112/11111)	(111-3/5)	# pore	(m/s)	(sec)	[max]	macro (m/s)	(sec)	[min]
70	1.17E-06	13.6	9.04E-03	8.43	1.19	2.71E-03	28.10	0.4
90	1.50E-06	17.4	1.16E-02	6.56	1.53	3.49E-03	21.86	0.5
110	1.83E-06	21.3	1.42E-02	5.36	1.86	4.26E-03	17.88	0.6
130	2.17E-06	25.2	1.68E-02	4.54	2.20	5.04E-03	15.13	0.7
150	2.50E-06	29.1	1.94E-02	3.93	2.54	5.81E-03	13.11	0.8
170	2.83E-06	32.9	2.20E-02	3.47	2.88	6.59E-03	11.57	0.9

Table 6:	Flow	Rate	Testing	Plan
I able 0.	FIUW	Nate	resung	i ian

7.2.3.3. Equipment and Hardware Modifications

The materials needed to make modification to the existing flow cell are outlined in section 6.2.4. Images were captured using a Canon Powershot Digital Camera. Images were imported, scaled, and dimensioned in AutoCAD 2007. An example of the setup can be seen in Figure 13.

Figure 13: Equipment Setup

7.2.3.4. Analysis

The images were downloaded, scaled, and dimensioned in AutoCAD 2007. The parameters of interest collected were based on how the flow developed through the flow cell. As subsequent images were observed, it was immediately recognized that the flow pattern developed into a right, center, and left region; and an overall leading and trailing edge was noticeable as well (see Figure 14). From this, the average vertical lengths of the leading and trailing edges, and horizontal lengths, of each region were measured and recorded in an Excel table (see Figure 15 and Table 7).

Figure 14 Flow Developing Into Right, Center, and Left Regions

Figure 15: Developed Flow Regions Dimensioned in AutoCAD 2007

		Disp		eriment Pict		
pic time interval	2	Picture #	1	2		Average Time Rate of Change
pic time interval	Ζ	Picture #	0	2	3	Average Time Rate of Change
mL/min		Area	912	971	1406	123.5
		L	18.1	13.7	15.8	-0.575
	Horizontal	М	21.8	26.5	24.4	0.65
	Region	R	17.6	17.3	16.9	-0.175
	Upper	L	50.4	49.3	70.1	4.925
170	Vertical	М	72	80.7	94.5	5.625
	Boundary	R	46.8	61.7	64	4.3
	Lower	L	37.9	43.5	58.8	5.225
	Vertical	M	45.3	57.6	62.7	4.35
	Boundary	R	35.5	45	55.2	4.925
pic time interval	2	Picture #	1	2	3	Average Time Rate of Change
pic time			0	2	4	
mL/min		Area	841	1023	1657	204
	Horizontal		22.8	16.4	16.1	-1.675
	Region	M	16.6	22.2	24.1	1.875
	Upper	R L	<u>18.2</u> 32.1	17.3 51.7	16.7 68.4	-0.375 9.075
150	Vertical	M	60.9	79.7	95.5	8.65
150	Boundary	R	42	55	58.4	4.1
	Lower	K L	29.3	37.2	50.3	5.25
	Vertical	M	33.6	49.6	50.5	6
	Boundary	R	27.7	49.0	46.2	4.625
	Doundary	~ ~ ~	21.1	-0.0	0.2	7.020
pic time interval	2	Picture #	1	2	3	Average Time Rate of Change
pic time	-		0	2	4	
mL/min		Area	701	1014	1376	168.75
		L	18.4	17.4	16.9	-0.375
	Horizontal	M	20	22.6	23	0.75
	Region	R	18.9	17.3	17.5	-0.35
	Upper	L	38.6	55.4	78.7	10.025
130	Vertical	M	56.7	75.9	96.6	9.975
	Boundary	R	35.4	48.2	68.3	8.225
	Lower	L	26.5	31.7	50.6	6.025
	Vertical	M	33	45.7	60.3	6.825
	Boundary	R	26.1	35.2	50.6	6.125
	,					
pic time interval	4	Picture #	1	2	3	Average Time Rate of Change
pic time interval pic time	4	Picture #	1 0	2	3 8	Average Time Rate of Change
	4	Picture # Area				Average Time Rate of Change 59.75
pic time			0	4	8	
pic time	Horizontal	Area	0 768	4 956	8 1246	59.75
pic time		Area L	0 768 19.2	4 956 16.7	8 1246 16.7	59.75 -0.3125
pic time	Horizontal	Area L M	0 768 19.2 19.4	4 956 16.7 21.5	8 1246 16.7 18.6	<u>59.75</u> -0.3125 -0.1
pic time	Horizontal Region	Area L M R L M	0 768 19.2 19.4 19.3	4 956 16.7 21.5 19	8 1246 16.7 18.6 21.6 81.7 102.3	59.75 -0.3125 -0.1 0.2875
pic time mL/min	Horizontal Region Upper	Area L M R L	0 768 19.2 19.4 19.3 39.4	4 956 16.7 21.5 19 57.2	8 1246 16.7 18.6 21.6 81.7	59.75 -0.3125 -0.1 0.2875 5.2875
pic time mL/min	Horizontal Region Upper Vertical Boundary Lower	Area L M R L M	0 768 19.2 19.4 19.3 39.4 62.5	4 956 16.7 21.5 19 57.2 83.4	8 1246 16.7 18.6 21.6 81.7 102.3	59.75 -0.3125 -0.1 0.2875 5.2875 4.975
pic time mL/min	Horizontal Region Upper Vertical Boundary	Area L M R L M R R	0 768 19.2 19.4 19.3 39.4 62.5 40.7	4 956 16.7 21.5 19 57.2 83.4 54.4	8 1246 16.7 18.6 21.6 81.7 102.3 76.5	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475
pic time mL/min	Horizontal Region Upper Vertical Boundary Lower	Area L M R L M R L	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1	4 956 16.7 21.5 19 57.2 83.4 54.4 44	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225
pic time mL/min 110	Horizontal Region Upper Vertical Boundary Vertical Boundary	Area L M R L M R L M R R	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35
pic time mL/min 110 pic time interval	Horizontal Region Upper Vertical Boundary Lower Vertical	Area L M R L M R L M	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575
pic time mL/min 110 pic time interval pic time	Horizontal Region Upper Vertical Boundary Vertical Boundary	Area L M R L M R L M R Picture #	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 2 4	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.475 4.225 3.675 3.35 Average Time Rate of Change
pic time mL/min 110 pic time interval	Horizontal Region Upper Vertical Boundary Vertical Boundary	Area L M R L M R L M R Picture # Area	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625
pic time mL/min 110 pic time interval pic time	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4	Area L M R L M R L M R R Picture # Area L	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581 11.7	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 17	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125
pic time mL/min 110 pic time interval pic time	Horizontal Region Upper Vertical Boundary Vertical Boundary	Area L M R L M R L M R Picture # Picture #	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581 11.7 27.1	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 2 4 734 734 17 21.8	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.475 4.225 3.355 3.35 Average Time Rate of Change 62.625 0.6125 -1.225
pic time mL/min 110 pic time interval pic time	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region	Area L M R L M R L M R Picture # Area L M R	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581 11.7 27.1 19.6	4 956 16.7 19 57.2 83.4 54.4 44 63.3 40 2 4 734 734 17 21.8 18.1	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875
pic time mL/min 110 pic time interval pic time mL/min	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 4 Horizontal Region Upper	Area L M R L M R C M R Picture # Area L M R L L	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581 11.7 27.1 19.6 39.7	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 734 17 21.8 18.1 53.4	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625
pic time mL/min 110 pic time interval pic time	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 4 Horizontal Region Upper Vertical	Area L M R L M R L M R Picture # Area L M R L M R L M M	$\begin{array}{c} 0\\ 768\\ 19.2\\ 19.4\\ 19.3\\ 39.4\\ 62.5\\ 40.7\\ 28.1\\ 42.8\\ 31.5\\ \end{array}$ $\begin{array}{c} 1\\ 0\\ 581\\ 11.7\\ 27.1\\ 19.6\\ 39.7\\ 54.8\\ \end{array}$	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 17 21.8 18.1 53.4 74.7	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.25
pic time mL/min 110 pic time interval pic time mL/min	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary	Area L M R L M R L M Picture # Area L M R L M R R R R R	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581 11.7 27.1 19.6 39.7 54.8 38	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 17 21.8 18.1 53.4 74.7 47.9	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.25 3.2125
pic time mL/min 110 pic time interval pic time mL/min	Horizontal Region Upper Vertical Boundary Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower	Area L M R L M R L M R Picture # Picture # Area L M R L M R L L	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581 11.7 27.1 19.6 39.7 54.8 38 38 33.5	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 2 4 734 734 17 21.8 18.1 53.4 734 734 734 734 734	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 63.9	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.25 3.2125 3.8
pic time mL/min 110 pic time interval pic time mL/min	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower Vertical	Area L M R L M R L M R Picture # Area L M R L M R L M R L M M R L M M R	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581 11.7 27.1 19.6 39.7 54.8 38.3 33.5 42.6	4 956 16.7 19 57.2 83.4 54.4 44 63.3 40 2 4 734 734 17 21.8 18.1 53.4 74.7 47.9 47.4 53.2	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 63.9 71.3	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.2125 3.8 3.5875
pic time mL/min 110 pic time interval pic time mL/min	Horizontal Region Upper Vertical Boundary Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower	Area L M R L M R L M R Picture # Picture # Area L M R L M R L L	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581 11.7 27.1 19.6 39.7 54.8 38 38 33.5	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 2 4 734 734 17 21.8 18.1 53.4 734 734 734 734 734	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 63.9	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.25 3.2125 3.8
pic time mL/min 110 pic time interval pic time mL/min 90	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower Vertical Boundary	Area L M R L M R L M R Picture # Area L M R L M R L M R L M R L M R R	$\begin{array}{c} 0\\ 768\\ 19.2\\ 19.4\\ 19.3\\ 39.4\\ 62.5\\ 40.7\\ 28.1\\ 42.8\\ 31.5\\ \end{array}$ $\begin{array}{c} 1\\ 0\\ 581\\ 11.7\\ 27.1\\ 19.6\\ 39.7\\ 54.8\\ 38\\ 33.5\\ 42.6\\ 30.4\\ \end{array}$	4 956 16.7 21.5 19 57.2 83.4 44 63.3 40 2 4 734 734 17 21.8 18.1 53.4 74.7 47.9 47.4 53.2 39.3	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 63.9 71.3 58.5	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.26 3.2125 3.8 3.5125
pic time mL/min 110 pic time interval pic time mL/min 90 pic time interval	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical	Area L M R L M R L M R Picture # Area L M R L M R L M R L M M R L M M R	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581 11.7 27.1 19.6 39.7 54.8 38 33.5 42.6 30.4	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 17 21.8 18.1 53.4 73.4 74.7 47.9 47.4 53.2 39.3	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 10.82 16.6 17.3 22.7 76.2 96.8 63.7 63.9 71.3 58.5 3	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.2125 3.8 3.5875
pic time mL/min 110 pic time interval pic time mL/min 90 90	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower Vertical Boundary	Area L M R L M R L M R Picture # Picture # Area L M R L M R L M R Picture #	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581 11.7 27.1 19.6 39.7 581 11.7 27.1 19.6 39.7 54.8 38 33.5 42.6 30.4 1 0	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 17 21.8 18.1 53.4 74.7 47.9 47.4 53.2 39.3 2 4	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 63.9 71.3 58.5 58.5 3 8	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.25 3.2125 3.8 3.5875 3.5125 Average Time Rate of Change
pic time mL/min 110 pic time interval pic time mL/min 90 pic time interval	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower Vertical Boundary	Area L M R L M R L M R Picture # Area L M R L M R L M R L M R C L M R R	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581 11.7 27.1 19.6 39.7 54.8 33.5 42.6 30.4 1 0 761	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 17 21.8 18.1 53.4 74.7 47.9 47.4 53.2 39.3 2 4 918	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 63.9 71.3 58.5 3 8 761	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.675 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.25 3.2125 3.8 3.5875 3.5125 Average Time Rate of Change
pic time mL/min 110 pic time interval pic time mL/min 90 90	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower Vertical Boundary	Area L M R L M R L M R Picture # Area L M R L M R C L M R R C L M R C L M Area L L M C C C C C C C C C C C C C C C C C	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581 11.7 27.1 19.6 39.7 54.8 38 33.5 42.6 30.4 1 0 761 17.7	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 734 17 21.8 18.1 53.4 74.7 47.9 47.4 53.2 39.3 2 4 918 15.8	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 63.9 71.3 58.5 3 8 761 16.9	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.25 3.2125 3.8 3.5875 3.5125 Average Time Rate of Change 0 -0.1
pic time mL/min 110 pic time interval pic time mL/min 90 90	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 4	Area L M R L M R L M R C L M Area L M R L M R C L M R R C L M R R C L M R C C C C C C C C C C C C C C C C C C	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581 11.7 27.1 19.6 39.7 54.8 38 33.5 42.6 30.4 1 0 761 17.7 20.6	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 17 21.8 18.1 53.4 74.7 47.9 47.4 53.2 39.3 2 4 918 15.8 22.5	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 63.9 71.3 58.5 	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.25 3.2125 3.8 3.5125 Average Time Rate of Change 0 -0.1 0.6375
pic time mL/min 110 pic time interval pic time mL/min 90 90	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower Vertical Boundary Lower Vertical Boundary Horizontal Region	Area L M R L M R L M R Picture # Area L M R L M R L M R L M R L M R L M R R L M R R R R R R R R R R R R R	0 768 19.2 19.4 19.3 39.4 62.5 40.7 28.1 42.8 31.5 1 0 581 11.7 27.1 19.6 39.7 54.8 38 33.5 42.6 30.4 1 0 761 17.7 20.6 18.7	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 4 734 17 21.8 18.1 53.4 73.4 73.4 73.7 47.9 47.4 53.2 39.3 2 4 918 15.8 22.5 18.6	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 63.9 71.3 58.5 3 8 76.5 16.9 71.4 76.5 76.5 76.5 76.5 77.4 76.5 76.5 77.4 76.5 76.5 77.4 76.2 76.2 76.2 76.5 77.3 76.5 77.3 76.5 77.3 76.5 76.2 76.5 77.3 76.5 77.3 76.5 77.3 76.5 77.3 76.5 77.3 76.5 77.3 76.5 77.4 76.2 76.5 77.5 76.2 76.2 77.5 76.2 76.2 76.5 77.3 76.5 77.5 76.5 77	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.25 3.2125 3.8 3.5875 3.5125 Average Time Rate of Change 0 0.1 0.6375 -0.1
pic time mL/min 110 pic time interval pic time mL/min 90 pic time interval pic time mL/min	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region	Area L M R L M R L M R Picture # Area L M R L M R L M R L M R L M R L M R L M R L M K L L M L M R L M R C L M R R C M R R R C M R R C M R R C M R R C M R R C M R R C M R R R C M R R C M R R C M R R R C M R R C M R R C M R R C M R R C M R R C M R R C M R R C M R R C M R R R C M R R C M R R C M R R R C M R R C M R R C M R R R C M R R C M R R C M R R C M R R C M R R R C M R R C M R R R R	$\begin{array}{c} 0 \\ 768 \\ 19.2 \\ 19.4 \\ 19.3 \\ 39.4 \\ 62.5 \\ 40.7 \\ 28.1 \\ 42.8 \\ 31.5 \\ \end{array}$	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 17 21.8 18.1 53.4 74.7 47.9 47.4 53.2 39.3 2 4 918 15.8 22.5 18.6 72.7	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 63.9 71.3 58.5 3 8 76.5 3 8 76.5 10 10 10 10 10 10 10 10 10 10	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.25 3.2125 3.8 3.5875 3.5125 0 0 -0.1 0.6375 -0.55 4.6
pic time mL/min 110 pic time interval pic time mL/min 90 90	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower Vertical Boundary Lower Vertical Boundary Lower Vertical Boundary Lower Vertical Boundary Lower Vertical Boundary Lower Vertical Boundary Lower Vertical Boundary Lower Vertical Boundary	Area L M R L M R L M R Picture # Area L M R L M R L M R L M R L M R L M R L M R L M R Area L M R Area L M R Area L M R Area L M R Area L M R Area L M R Area L M R Area L M R Area L M R Area L M R Area L M Area L M Area L M Area L M Area L M Area L M Area L M Area L M Area L M Area L M R L M Area L M R L M Area L M R Area L M R L M M R L M M R L M M R L M M R L M M M M R L M M M M M M M M M M M M M	$\begin{array}{c} 0\\ 768\\ 19.2\\ 19.4\\ 19.3\\ 39.4\\ 62.5\\ 40.7\\ 28.1\\ 42.8\\ 31.5\\ \end{array}$ $\begin{array}{c} 1\\ 0\\ 581\\ 11.7\\ 27.1\\ 19.6\\ 39.7\\ 54.8\\ 38\\ 33.5\\ 42.6\\ 30.4\\ \end{array}$ $\begin{array}{c} 1\\ 0\\ 761\\ 17.7\\ 20.6\\ 18.7\\ 44.4\\ 66.8\\ \end{array}$	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 17 21.8 18.1 53.4 74.7 47.9 47.4 53.2 39.3 2 4 918 15.8 22.5 18.6 72.7 81.9	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 63.9 71.3 58.5 3 8 761 16.9 25.7 14.3 81.2 96.1	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.675 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.25 3.2125 3.8 3.5875 3.5125 Average Time Rate of Change 0 -0.1 0.6375 -0.55 4.6 3.6625
pic time mL/min 110 pic time interval pic time mL/min 90 pic time interval pic time mL/min	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region 4 Horizontal Region	Area L M R L M R L M R L M R L M R L M R L M R L M R L M R L M R L M R Area L M R Area L M R Area L M R Area L M R Area L M R Area L M R Area L M R Area L M R Area L M R Area L M R Area L M R Area Area L M R Area Area Area Area Area Area Area Area R R Area Are	$\begin{array}{c} 0\\ 768\\ 19.2\\ 19.4\\ 19.3\\ 39.4\\ 62.5\\ 40.7\\ 28.1\\ 42.8\\ 31.5\\ \end{array}$ $\begin{array}{c} 1\\ 0\\ 581\\ 11.7\\ 27.1\\ 19.6\\ 39.7\\ 54.8\\ 38\\ 33.5\\ 42.6\\ 39.7\\ 54.8\\ 33.5\\ 42.6\\ 30.4\\ \end{array}$	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 17 21.8 18.1 53.4 74.7 47.9 47.4 53.2 39.3 2 4 918 15.8 22.5 18.6 72.7 81.9 59.6	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 76.2 96.8 63.9 71.3 58.5 3 8 761 16.9 25.7 14.3 81.2 96.1 71.4	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.26 3.2125 3.8 3.5875 3.5125 0 -0.1 0 -0.1 0.6375 -0.55 4.6 3.6625
pic time mL/min 110 pic time interval pic time mL/min 90 pic time interval pic time mL/min	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower Vertical Boundary Horizontal Region 4 Horizontal Region	Area L M R L M R L M R C L M R L M R L M R L M R L M R L M R L M R L M R L M R L M R L L M C M R C L M R C C M R C C M R C C C M R C C C C C	$\begin{array}{c} 0 \\ 768 \\ 19.2 \\ 19.4 \\ 19.3 \\ 39.4 \\ 62.5 \\ 40.7 \\ 28.1 \\ 42.8 \\ 31.5 \\ \end{array}$ $\begin{array}{c} 1 \\ 0 \\ 581 \\ 11.7 \\ 27.1 \\ 19.6 \\ 39.7 \\ 54.8 \\ 38 \\ 33.5 \\ 42.6 \\ 30.4 \\ \end{array}$ $\begin{array}{c} 1 \\ 0 \\ 761 \\ 17.7 \\ 20.6 \\ 18.7 \\ 44.4 \\ 66.8 \\ 39.8 \\ 39.5 \\ \end{array}$	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 17 21.8 18.1 53.4 74.7 47.9 47.4 53.2 39.3 2 4 918 15.8 22.5 18.6 72.7 81.9 59.6 57.7	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 63.9 71.3 58.5 3 8 761 16.9 25.7 14.3 8 761 16.9 25.7 14.3 8 761 16.9 25.7 14.3 8 761 16.9 25.7 14.3 76.5 76.2 77.4 77.4 77.5 77.4 77.5 77.4 77.5 77.4 77.5 77.4 77.5 77.4 77.5 77.4 77.5 77.4 77.5 77.4 77.5 77.5 77.4 77.5 77.4 77.5 77.4 77.5 77.	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 3.375 4.5625 5.26 3.2125 3.8 3.5125 Average Time Rate of Change 0 -0.1 0 -0.1 0.6375 -0.55 4.6 3.6625 3.95 4.25
pic time mL/min 110 pic time interval pic time mL/min 90 pic time interval pic time mL/min	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower Vertical	Area L M R L M R L M R Picture # Area L M R L M R L M R L M R L M R L M R L M R L M R L M R L M R L M R L M R R L M R R L M R R L M R R R R R R R R R R R R R	$\begin{array}{c} 0 \\ 768 \\ 19.2 \\ 19.4 \\ 19.3 \\ 39.4 \\ 62.5 \\ 40.7 \\ 28.1 \\ 42.8 \\ 31.5 \\ \hline \\ 1 \\ 0 \\ 581 \\ 11.7 \\ 27.1 \\ 19.6 \\ 39.7 \\ 54.8 \\ 38 \\ 33.5 \\ 42.6 \\ 30.4 \\ \hline \\ 1 \\ 0 \\ 761 \\ 17.7 \\ 20.6 \\ 18.7 \\ 44.4 \\ 66.8 \\ 39.8 \\ 39.5 \\ 50.7 \\ \hline \end{array}$	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 17 21.8 18.1 53.4 74.7 47.9 47.4 53.2 39.3 2 4 918 15.8 22.5 18.6 72.7 81.9 59.6 57.7 47.2	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 63.9 71.3 58.5 3 8 76.1 16.9 71.4 76.2 96.8 63.7 63.9 71.3 58.5 76.2 96.8 63.7 63.9 71.3 58.5 76.2 96.8 63.7 63.9 71.3 58.5 76.2 96.8 63.7 76.2 96.8 63.7 76.2 96.8 63.7 76.2 96.8 63.7 76.2 96.8 71.3 76.2 96.8 71.3 76.2 96.8 71.3 76.5 71.3 76.2 96.8 71.3 76.5 71.3 76.2 96.8 71.3 76.2 96.8 71.3 76.2 96.8 71.3 76.2 96.8 71.3 76.2 96.8 71.3 76.2 96.8 71.3 76.2 96.8 71.3 76.2 96.8 71.3 76.2 96.8 71.3 76.2 96.8 71.3 76.2 96.8 71.3 76.2 96.8 77.3 76.2 96.8 77.3 76.2 96.8 77.3 76.2 96.8 77.3 76.2 96.8 77.3 76.2 96.8 77.3 76.2 96.8 77.3 76.2 96.8 77.3 76.2 96.8 77.3 76.2 96.8 77.3 76.2 97.1 76.2 97.1 76.2 77.2 76.2 97.2 76.2 77.3 76.2 77.3 76.2 77.3 76.2 77.3 77.1 76.2 77.1 76.2 77.1 76.2 77.1 77.2 77.1	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 0.3875 4.5625 5.25 3.2125 3.8 3.5125 Average Time Rate of Change 0 0.6375 -0.1 0.6375 -0.55 4.6 3.6625 3.95 4.25 3.55
pic time mL/min 110 pic time interval pic time mL/min 90 pic time interval pic time interval pic time	Horizontal Region Upper Vertical Boundary Lower Vertical Boundary 4 Horizontal Region Upper Vertical Boundary Lower Vertical Boundary Horizontal Region 4 Horizontal Region	Area L M R L M R L M R C L M R L M R L M R L M R L M R L M R L M R L M R L M R L M R L L M C M R C L M R C C M R C C M R C C C M R C C C C C	$\begin{array}{c} 0 \\ 768 \\ 19.2 \\ 19.4 \\ 19.3 \\ 39.4 \\ 62.5 \\ 40.7 \\ 28.1 \\ 42.8 \\ 31.5 \\ \end{array}$ $\begin{array}{c} 1 \\ 0 \\ 581 \\ 11.7 \\ 27.1 \\ 19.6 \\ 39.7 \\ 54.8 \\ 38 \\ 33.5 \\ 42.6 \\ 30.4 \\ \end{array}$ $\begin{array}{c} 1 \\ 0 \\ 761 \\ 17.7 \\ 20.6 \\ 18.7 \\ 44.4 \\ 66.8 \\ 39.8 \\ 39.5 \\ \end{array}$	4 956 16.7 21.5 19 57.2 83.4 54.4 44 63.3 40 2 4 734 17 21.8 18.1 53.4 74.7 47.9 47.4 53.2 39.3 2 4 918 15.8 22.5 18.6 72.7 81.9 59.6 57.7	8 1246 16.7 18.6 21.6 81.7 102.3 76.5 61.9 71.4 58.3 3 8 1082 16.6 17.3 22.7 76.2 96.8 63.7 63.9 71.3 58.5 3 8 761 16.9 25.7 14.3 8 761 16.9 25.7 14.3 8 761 16.9 25.7 14.3 8 761 16.9 25.7 14.3 76.5 76.2 77.4 77.4 77.5 77.4 77.5 77.4 77.5 77.4 77.5 77.4 77.5 77.4 77.5 77.4 77.5 77.4 77.5 77.4 77.5 77.5 77.4 77.5 77.4 77.5 77.4 77.5 77.	59.75 -0.3125 -0.1 0.2875 5.2875 4.975 4.475 4.225 3.575 3.35 Average Time Rate of Change 62.625 0.6125 -1.225 3.375 4.5625 5.26 3.2125 3.8 3.5125 Average Time Rate of Change 0 -0.1 0 -0.1 0.6375 -0.55 4.6 3.6625 3.95 4.25

Table 7: Image Data	Summary pe	r Flow Rate
---------------------	------------	-------------

From the data collected, presented in Table 7 above, the behavior of the horizontal dispersion could be plotted. In Figures 16 and 17, it can be seen that as the flow develops in the main part of the flow cell (around 4 seconds), that horizontal dispersion maintains an average limiting value of approximately 17.2-mm.

Figure 16: Horizontal Development (Left Region)

Figure 17: Horizontal Development (Right Region)

7.2.3.5. Conclusion

It can be concluded from the above data that as the flow enters the middle portion of the main part of the flow cell, the minimum distance from the wall in which edge effects will be detected is approximately 17.2 mm. In the paper design, the distance from the edge of the inside of the wall to the viewing window is 25 mm; therefore, if imaging is performed within the dimensions of the viewing window, and at the flow rates used in these experiments, edge effects are expected to be negligible.

Furthermore is can be deduced that the imaging equipment has sufficient optical access. As can be seen in Figure 11.3.2 in Appendix 11.3, the 100 mm square optical viewing area is situated 25 mm from each adjacent wall. Considering that, at most, 40 mm by 40 mm of viewing area will be used at any given time; the 100 mm square viewing window is more than adequate to provide sufficient optical access in a region with negligible edge effects. Thus, optical access for image collection is maximized. Therefore, both Design Requirement #2 and Design Requirement #4 are satisfied.

7.3. Design Requirements Analysis

Table 8, below, lists each of the Final Design Requirements, the status of the validation of the requirements, and the method by which that requirement was verified. As can be seen, all design requirements were verified and met, thus, the paper design meets the requirements as laid out in section 1.2.2.2.

Design Requirement	<u>Table 8: Final Design Requirement Va</u> Status of Validation	Method of Validation
The design shall consist of a	Stutus of Tunution	Verified by final paper design as
porous media bed, a flow loop		presented in this document.
with appropriate pumping	Passed	presented in this document.
apparatus, measurement and	1 45504	
control equipment.		
The flow cell shall be of sufficient		Verified by experimentation as
depth and width to make edge	Passed	outlined in section 7.
effects negligible.	1 45504	outlined in section 7.
The flow cell shall be able to take		Verified by paper design as
appropriate direct and indirect		presented in this document.
measurements potentially		Appropriate equipment was
included but not limited to		selected to collect data on all
pressure, temperature, flow rate,	Passed	relevant measurements.
etc. These measurement abilities	1 45504	rerevant measurements.
will be appropriate to quantify the		
flow in the media bed.		
The flow cell shall have sufficient		Verified by experimentation as
optical access to take desired		outlined in section 7.
measurements and images using		
the TR 3-D PIV equipment	Passed	
available in the OSU mechanical		
engineering department.		
The material of the flow cell,		Verified by final paper design as
media, and fluid must have	Passed	presented in this document.
matching indices of refraction.		1
The flow cell shall operate into		Verified by final paper design as
the porous media inertial flow	Passed	presented in this document and
regime.		also by experimentation as
-		outlined in section 7.
The flow cell shall be designed to		Verified by final paper design as
withstand operating conditions,	Passed	presented in this document.
such as pressure, temperature, and		Additional testing should be
flow rate.		performed if a prototype is
		constructed.

8. PROJECT SUMMARY

8.1. Group Interactions

The original formation of the project team, like many other groups, was somewhat random. Prior to the day the team formed, none of the members had worked together or knew each other. As with most project groups, after the initial Forming period of the Team Cycle there was a Storming phase where the members of the group tested each other, established ground rules for interaction, and got to know one another [32]. The Norming phase found the group making the transition from being a group to a true team [32]. A one-for-all and all-for-one mentality formed with all team members working toward the common goal of meeting the design requirements and succeeding as a team on the project. Finally, the latter half of fall term saw the team enter the Performing phase where they have been at ever since [32].

Typical group interactions were characterized by loud and boisterous meetings, long work sessions in the labs, and strong camaraderie. When one team member couldn't complete something due to other obligations, after the requisite jovial ribbing, the other team members would pick up the slack knowing full well that when something came up for them, they too could count on the team to pull together and help them out. The team truly was a team.

As the team is writing this report they find themselves entering the Adjourning phase [32]. Looking back on their time together, they are happy with their working relationships, proud of their accomplishments and have even become friends. In spite of the major hurtles and setbacks that the project faced, the team stayed together and persevered. They ironed out their differences, became a cohesive group, and made the leap to become a true team.

8.2. Technical Knowledge Gained

As seems to be the case with most educational endeavors the team has thus far faced, the further they got into the project, the more they realized the less they knew. Certainly, technical knowledge was gained through the background research phase where the team chewed through hundreds of pages of journal articles, textbooks, and other secondary sources. The design phase saw the team processing the ASME pressure vessel codes and applying a multitude of formulae from literature and their extra-scholastic jobs to the design to assure safety and ensure that design criteria would be fully met. Knowledge was specifically gained in material selection for caustic environments, pressure vessels and proper pressure vessel sealing and bolt patterns, borosilicate manufacture and machining, caustic fluid pump selection, and a myriad of pressure and flow calculations.

The construction phase saw the team run against some major obstacles which resulted in even more background research and more formulae to design a proof-of-concept experiment that would test the major design requirements. Technical knowledge was gained in pressure fitting selection, and dye injection and imaging techniques.

Analyzing the proof-of-concept experimental data proved a valuable learning opportunity. The team gained hands-on experience with the difficulties of manually interpreting imaging data. Additional skills were gained in effective data presentation and explanation.

Writing this report significantly benefited the team's technical writing abilities. Specifically, the team improved their written technical communication and presentation skills through a multitude of rough drafts, referring to the ASME writing standard and citation guides, and learned to take advantage of peer

editing within the team. Certainly, the final report, when compared to initial reports, shows marked improvement in the aforementioned areas.

8.3. Mistakes Made

This project was not without its mistakes. Some of the largest originated in communication. One in particular stands out in the team's mind with the discontinuity between expected funding and actual funding. Due to communication issues, the project sponsor was not informed that a financial outlay at the beginning of December would be expected to construct a viable prototype per the course syllabus. The team assumed that the project sponsor knew that a prototype would be constructed and that the sponsor was to provide the necessary funds. The project sponsor assumed that this senior project would follow past projects that didn't require a prototype but could instead conduct further analysis to fulfill course requirements. The course instructor assumed that the requirements of a built prototype and funds with which to construct had been relayed to the project sponsor. Because of false assumptions, the project sponsor was surprised to learn that the team expected funding, the team was surprised when the funding didn't appear, and the course instructor was surprised when the team wasn't able to build a prototype. Luckily, the team was able to continue with the project by revising their testing plan to use existing equipment. This communication blunder taught the team a valuable lesson about clarifying expectations and responsibilities at the onset of a project.

Another mistake common throughout the project was the team's underestimation of time required to complete key tasks. Because of poor time estimation skills, many late nights and weekends were spent in the labs pouring over data, designs, presentations, and project reports. Fall term's rush to complete all required work in a quality manner was quite stressful as many very long days and nights were pulled in order to meet expectations. Naturally, the team would have preferred a more balanced work load.

A particularly regrettable and unavoidable mistake came during data collection to confirm that all design requirements were met. Due to time limitations, the team was not able to conduct enough experimental runs to achieve statistical significance. Instead, the team had to conduct one run at each of the flow rates of interest before they had to return the equipment to the normal configuration and the lab to the graduate students. The team was aware of this mistake going into testing but was not able to avoid it due to the aforementioned time constraints.

8.4. Major Issues Encountered During Design Phase

Especially during the initial design phase, the team suffered from a dearth of knowledge on the subject of flow through porous media. While a great deal of background research was conducted, the team learned the most valuable information pertaining to the project when talking with the project mentor and other parties with an interest in the project. Knowing which questions to ask and the appropriate words with which to ask them turned into a large headache for the team.

Difficulty was encountered when working with the ASME pressure vessel codes. Being that this was the team's first encounter with the tomes of ASME codes, a significant amount of time was consumed even trying to navigate the index system to find the relevant codes. Once the appropriate codes had been found, additional time was required to adapt codes designed for metal pressure vessels for use with plastics as found in the team's design.

8.5. Major Issues Encountered During Build Phase

The single major issue the team encountered during the build phase was a near complete lack of funds. Rather than build the paper design as presented in this document to use in the testing phase, the team was forced to design a new testing procedure to use existing laboratory equipment, as outlined in section 6 of this document. Had the team No Money

8.6. Major Issues Encountered During Testing and Analysis Phase

The largest issue faced during the testing phase was the absence of a prototype. Due to the troubles with funding mentioned earlier, a prototype was not fabricated and, as mentioned earlier, a new testing scheme had to be created. The new testing scheme called for modifications to be made to the 2-D flow cell which was made available to the team. The night before the team was to make irreversible modifications to the flow cell, the project sponsor informed the team that the previously approved modifications could not be made and a non-intrusive testing method would instead have to be substituted. The team scrambled to pull together appropriate equipment and create new procedures for testing. While the team was successful in the testing endeavor, there were several tense hours as the team composed new testing procedures the night before testing was to commence.

Another major issue encountered, discussed in section 6 of this document, was a lack of time on the 2-D porous media bed. The team was only able to run one set of experiments before the lab equipment had to be returned to the graduate students who normally conduct research on said equipment. Due to a lack of data, all conclusions drawn from the testing phase are not statistically significant and, due to this, no conclusions of any weight can be drawn from the testing data. However, in spite of the dearth of experiment runs and corresponding data points, the results are instructive and suggest important areas that should be further investigated.

When analyzing the test data, the team found that it had to spend a significant amount of time analyzing the data by hand. This was due to the data coming in photographic form. Because no program that the team was familiar with could conduct the data analysis without a significant investment of time by the team into coding an analysis routine, the team chose to analyze all of the data by hand using AutoCAD as a geometric referencing tool. While this method did work well, a software program with the ability to analyze photographic data without requiring lengthy setup would have been a great benefit and time-saver for the group. Had the team acquired a larger set of data, such as would have been generated with running enough repeated experiments to achieve statistical significance, time would have been invested in creating an algorithm to automatically analyze the data.

8.7. Final Budget

Due to a lack of funding, as discussed in several earlier sections, the final project budget came to a total of \$14. The lack of funding, as discussed earlier, was a significant hindrance but did not derail completion of the senior design course. Table 9, below, lists the funds available, final budget, expenditures, and final account balance. In spite of going over-budget by \$14, the project sponsor approved of the cost overrun.

Funds Available:	\$0.00
Expenditures:	
Media Bottles, 150 ml (x 2)	\$7.00/each
Final Budget:	(\$14.00)

Table 9: Final Balance Sheet and Budget

8.8.Conclusion

This project, in light of the paper design and testing results, is quite promising but was limited due to a lack of funding. The project team believes that the paper design presented in this document will work as designed and will meet all original design criteria. As is evidenced by section 7, the paper design and analogous testing proved that the project meets the modified design requirements. Indications from the project sponsor point to a future implementation of the design once adequate funding has been secured.

The team is glad to have participated in this project and proud of the team's accomplishments, especially in light of the setbacks experienced. This report is the culmination of twenty weeks worth of work on this project. As is evidenced in this document, the team went from a layman's knowledge of porous media flow apparatuses, to a more advanced knowledge state. Not only did they learn how a flow bed and flow loop work, but they also designed a 3-D porous media bed and flow loop intended to push into Reynolds numbers of 400 and higher. The design not only allows for safety and a core flow free of edge effects but it also provides easy optical access for the TR 3-D PIV equipment in the possession of the project sponsor and gives relatively easy access for cleaning of the porous media between experiment runs.

All in all, the team feels that they worked well together, acquired a great deal of useful knowledge, produced a good and worthwhile final product in spite of the difficulties encountered, and are proud of their work.

Thanks for the memories,

The Porous Media Team David Chadwick, Travis Wilhelm, Douglas Van Bossuyt

9. APPENDIX SECTION 1: ENGINEERING CALCULATIONS AND DATA

9.1. Porous Media Test Bed Pressure Drop Calculations

The pressure drop per unit length across the porous media test bed can be calculated by the following formula, [22]

$$\frac{\Delta P}{L} = \frac{\rho V_o^2 (1-\varepsilon)}{D\varepsilon^3} \left[\frac{180(1-\varepsilon)}{\text{Re}} + 1.8 \right] \quad (\text{Eqn. 9.1.1})$$

where,

 $Re = \frac{\rho V_o D}{\mu} = Pore Reynolds Number (Eqn. 9.1.2)$ $\varepsilon = Porosity of a Randomly Packed Bed$ $V_o = Volumetric Flow/Cross Sectional Area of Flow Channel.$

Dr. Liburdy's [18] research interest lies in characterizing the flow in porous media for pore Reynolds numbers that range from 200 to 400. A typical calculation to determine the pressure per unit length for a flow channel cross sectional are $19.3(10-3)-m^2$, volumetric flow rate of $1.55(10-3)-m^3/s$, and a Re_{Pore} = 400 is as follows:

$$\frac{\Delta P}{L} = \frac{1700(0.08^2)(1-0.3)}{0.006(0.3)^3} \left[\frac{180(1-0.3)}{400} + 1.8 \right] = 85849 - Pa \quad (\text{Eqn. 9.1.3})$$

and in pressure and feet of water for a flow channel that is 0.25-m in length [23],

$$\frac{\Delta P}{L} = 3.11 - psi = 7.2 - ft \quad (Eqn. 9.1.4)$$

A spreadsheet was set up in Excel to expedite the calculations for other Reynolds numbers of interest and understand the influence that certain parameters had on it. A summary of the test bed pressure drop at for the Reynolds number range is in Table 9.1, and a spreadsheet for general calculations is presented Table 9.2.

	Fable 9.1: Porous Me	dia Test Bed Pressure Drop	
Flow Rate and Pressu	re Drop for 6mm Be	ads and 8 Bead Diameters beyo	ond FOV w/ Flow
	Channel I	_ength 0.280-m	
Re(Pore)	Pressure Drop, ft	Pressure Drop, psi	Flow Rate, gpm
200	1.82	0.786	12.2
400	8.04	3.48	24.5

Porous Media Test Bed Final Report

"Knowns"		for Flow Calculations an	"Calculated"		
Kilowiis	Value	Units	Galculated	Value	Units
Porocity	0.3	O into	Vel (Macro)	0.08	m/s
Bead Diameter	0.006	m	Vel (Pore)	0.2666667	m/s
Length	0.28	m	Re (Macro)	5560	
Width	0.139	m	Re (Pore)	400	
Height	0.139	m	Pressure Drop	85687.61	Pa/m
Area	0.019321	m^2	Minmum Pressure	23992.531	Pa
Volume	0.00540988	m^3		3.4798287	psi
Density	1700	kg/m^3		8.0384042	ft
Viscocity	6.80E-03	N-s/m^2			
Viscocity (kenimatic)	4.00E-06	m^2/s			
Flow Rate	24.49960374	gpm			
	0.00154568	m^3/s			
Hydraulic Radius	0.139	m			
Cammera Calculations			Assumptions		
	Value	Units	1. Square Cross		
Pixel Height (Length?)	1040	pixels	· ·		
Pixel Width	1300	pixels	2		
Pixels/Bead Diameter	160	pixels/bead diameter			
FOV (Height)	6.5	bead diamters	3		
FOV (Width)	8.125	bead diamters			
Additional Bead Diamters for Boundry Effects	7.520833333	bead diamters	4		
Minimum Height (Length?)	0.12925	m			
Minimum Width	0.139	m			
Minimum Height (Length?)	5.0885725	in			
Minimum Width	5.47243	in			

Table 9.2: Spreadsheet for Flow Calculations and Flow Channel Sizing

9.2. MSDS Sheets for Working Fluid

Zinc Chloride Solution		
	MATERIAL SAFETY DATA SHEET	
Common Name	ZINC CHLORIDE SOLUTION	
Manufacturer	Madison Industries, Inc.	
	P.O. Box 175	
	Old Bridge, New Jersey 08857	
Telephone	(732) 727-2225	
Emergency Telephone	1(800) 275-3924	
This document is prepared purse	uant to the OSHA Hazard Communication Standard (29 CFR 1910.1200).	
SECTION I. MATERIAL IDE	NTIFICATION	
Common Name	Zinc Chloride	
Molecular Formula	ZnCl ₂ in water	
Molecular Formula CAS Number SECTION II. <u>PHYSICAL DA</u>	7646-85-7	
CAS Number SECTION II. <u>PHYSICAL DA</u> Physical State	7646-85-7 <u>TA</u> Liquid	
CAS Number SECTION II. <u>PHYSICAL DA</u>	7646-85-7 TA Liquid 120° to 150° C	
CAS Number SECTION II. <u>PHYSICAL DA</u> Physical State Boiling Point	7646-85-7 <u>TA</u> Liquid	
CAS Number SECTION II. <u>PHYSICAL DA</u> Physical State Boiling Point Melting Point	7646-85-7 TA Liquid 120° to 150° C 248° to 315°F	
CAS Number SECTION II. <u>PHYSICAL DA</u> Physical State Boiling Point Melting Point Freezing Point*	7646-85-7 TA Liquid 120° to 150° C 248° to 315°F NA	
CAS Number SECTION II. <u>PHYSICAL DA</u> Physical State Boiling Point Melting Point	7646-85-7 TA Liquid 120° to 150° C 248° to 315°F NA 40° to -70° F	
CAS Number SECTION II. PHYSICAL DAT Physical State Boiling Point Melting Point Freezing Point* Vapor Pressure	7646-85-7 TA Liquid 120° to 150° C 248° to 315°F NA 40° to -70° F Ca. 3mm.	
CAS Number SECTION II. PHYSICAL DAT Physical State Boiling Point Melting Point Freezing Point* Vapor Pressure Vapor Density*	7646-85-7 TA Liquid 120° to 150° C 248° to 315°F NA 40° to -70° F Ca. 3mm. Vapor is water	
CAS Number SECTION II. PHYSICAL DAT Physical State Boiling Point Melting Point Freezing Point* Vapor Pressure Vapor Density* Volitiles %*	7646-85-7 TA Liquid 120° to 150° C 248° to 315°F NA 40° to -70° F Ca. 3mm. Vapor is water 29 to 50	
CAS Number SECTION II. PHYSICAL DAT Physical State Boiling Point Melting Point Freezing Point* Vapor Pressure Vapor Density* Volitiles %* Specific Gravity	7646-85-7 TA Liquid 120° to 150° C 248° to 315°F NA 40° to -70° F Ca. 3mm. Vapor is water 29 to 50 1.57 to 2.0	
CAS Number SECTION II. PHYSICAL DAT Physical State Boiling Point Melting Point Freezing Point* Vapor Pressure Vapor Density* Volitiles %* Specific Gravity Solubility in H ₂ O	7646-85-7 TA Liquid 120° to 150° C 248° to 315°F NA 40° to -70° F Ca. 3mm. Vapor is water 29 to 50 1.57 to 2.0 100%	

Figure 9.2.1: MSDS for Zinc Chloride – Page 1 [12]

inc Chloride Solution	
Odor	Odorless
рН	2.0
See Section X for specific grades	s and percentage
SECTION III. <u>FIRE AND EXPL</u>	OSION DATA
Flash Point	Will not burn
Extinguishing Media	Not applicable
Special Fire Fighting Instructions	Not applicable
Fire and Explosion Hazards	May release Zinc Chloride and Zinc Oxide fumes and Hydrogen Chloride gas in a fire.
SECTION IV. <u>REACTIVITY DA</u>	
Stability	Very stable at high temperatures.
Incompatibility	Cyanide - may release toxic HCN
	Sulfides - may release toxic Hydrogen Sulfide
Decomposition	Will not occur except at high temperatures.
Polymerization	Will not occur.
SECTION V. <u>HEALTH AND H</u>	
Exposure Limits	OSHA 8 hour Time Weighted Average (TWA) and ACGIH TLV-TWA for Zinc Chloride (fume) are one mg. Per cubic meter.
Swallowing	May cause burns of mouth and throat.
Skin	May cause severe skin burns.
Eyes	May cause severe cornea injury and result in permanent impairment of vision or even blindness.
Inhalation	Dusts, mists or vapors, may cause severe irritation to upper respiratory tract. Severe exposure may cause pulmonary edema. Metal fume fever may result from inhaling Zinc Oxide, which is a possible decomposition product at high temperatures.
Carcinogenicity	None as per NTP, OSHA, and IARC.
12.doc	Madison Indu

SDS - Zinc Chloride Solution						Page 3			
SECTION VI. <u>FIRST AID PR</u>	OCEDURES								
Swallowing	Call F	Poison Contro	s of milk or w I Center or a to an uncons	physician. Do					
Skin	Remo	Immediately flush skin with plenty of water for 15 minutes. Remove contaminated clothing and shoes. Call a physician. Wash contaminated clothing before reuse.							
Eyes		Immediately flush eyes with plenty of water for 15 minutes. Hold eyelids apart during irrigation. Call a physician.							
Inhalation			apors are inha and call a ph		ately remove				
Carcinogenicity	None	None							
SECTION VII. <u>HANDLING P</u>	RECAUTION	<u>IS</u>							
Personal Protective Equipm	er gloves. Wh transparent t								
Ventilation	Ventilation Maintain good general ventilation to keep mists below exposure guidelines.								
SECTION VIII. <u>SPILL OR LE</u>	AK PROCE	DURES							
Spills and Leaks	spills	Comply with Federal, State and local regulations on reporting spills. Flush with plenty of water to an approved chemical sewer.							
Waste Disposal	Chlor from	ide can be ca an insoluble 2		d with Sodiur e solid that c	ons. Zinc n Carbonate to an be scooped				
SECTION IX. SPECIAL PRE	CAUTIONS								
Storage			teel container ners or storag						
SECTION X. PHYSICAL PR	OPERTIES (FROM SECT						
<u>Properties</u>	<u>50.0%</u>	<u>62.5%</u>	<u>65.0%</u>	<u>70.0%</u>	<u>72.0%</u>				
Weight per Gallon (lbs.)	13.08	14.83	15.33	16.33	16.74				
Specific Gravity	1.57	1.78	1.84	1.96	2.01				
sdszncl2.doc					Madison	Industries,			
			nc Chloride			muustries			

- Zinc Chloride Solution					
Properties	<u>50.0%</u>	<u>62.5%</u>	<u>65.0%</u>	<u>70.0%</u>	<u>72.0%</u>
Boiling Point °F	239	253	259	275	283
Freezing Point °F	-70	-50	-40	38	40
Volitiles %	50.0	37.5	35.0	30.0	28.0
Viscosity Centipoise 70°F	3.6	9.0	14.0	40.0	41.0
Zinc Content (SARA 313)	24%	30%	31.2%	33.6%	34.6%

NOTICE: The information herein is presented in good faith and believed to be accurate. However, no warranty, expressed or implied, is given. Regulatory requirements are subject to change and may differ from one location to another. It is the buyer's responsibility to ensure that its activities comply with Federal, State and local laws.

U.S. REGULATIONS: SARA 313 Information. This product contain the following substance subject to the reporting requirements of Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR Part 372: **ZINC COMPOUND** See Section X for concentrations.

SARA HAZARD CATEGORY: This product has been reviewed according to the EPA "Hazard Categories" promulgated under Sections 311 and 312 of the Superfund Amendments and Reauthorization Act of 1986 (SARA Title III) and is considered, under applicable definitions, to meet the following category: **AN IMMEDIATE HEALTH HAZARD**.

SECTION XII. SHIPPING INFORMATION

ZINC CHLORIDE SOLUTION, 8, UN1840, PGIII, RQ, ERG 154

SECTION XIII.	MSDS PREPARATION INFORMATION

Prepared by

Joel L. Goldschmidt, Vice President

Updated

March 16, 1999

Copyright © 1999

msdszncl2.doc

Madison Industries, Inc.

Figure 9.2.4: MSDS for Zinc Chloride – Page 4 [12]

The above Figures 9.2.1-4 display the Material Safety Data Sheet for Zinc Chloride solutions. Specific attention should be paid to toxilogical data and reactivity data.

9.3. Honeycomb Flow Straightener Length Determination

To determine the length of honeycomb to straighten the flow entering the porous media test bed, a few assumptions need to be made. As a first assumption, the velocity profile must uniform and fully developed before entering the honeycomb. Next, it is assumed that the flow is evenly distributed over the channels of the honeycomb. From this it can be written that the flow rate of the channel is equal to the sum of the flow rates of the individual channel, that is [24],

$$Q_c = nQ_h$$
 (Eqn. 9.3.1)

and from the definition of volumetric flow rate [24],

$$(AV)_c = n(AV)_h$$
 (Eqn. 9.3.2)

Solving for the honeycomb velocity and estimating the ratio of the areas to be 1.11 then the velocity in a single flow channel has the value of,

$$V_h = \left(\frac{A_c}{nA_h}\right) V_c = 1.11 V_c = 1.11(0.04\frac{m}{s}) = 0.044\frac{m}{s}$$
 (Eqn. 9.3.3)

From this the Reynolds number can be calculated for a single channel in the honeycomb for a channel diameter of 5-mm (smaller than the bead diameter), and has the value,

$$\operatorname{Re}_{h} = \frac{Vd}{\upsilon} = \frac{\left(0.044 \frac{m}{s}\right)(0.005m)}{4\left(10^{-6}\right)\frac{m}{s}} = 55 \quad \text{(Eqn. 9.3.4)}$$

A Reynolds number of 55 places the flow within the laminar flow region for pipe flow. By substituting in known values and from F. M. White's *Fluid Mechanics*, [24] the length for fully developed flow in the laminar flow region can be determined from,

$$L \approx 0.06 (\text{Re})(d) = 0.06 (55) (0.005m) = 0.0165m$$
 (Eqn. 9.3.5)

It can be concluded that the minimum length of honeycomb to ensure fully developed laminar flow into the test bed is to be 17-mm.

9.4.ATF Fathom Output (Low Flow Rate)

AFT Fathor		put				(1	of 2)					12/2/2006
CH2M HILL	-					AFT Fat	thom Mo	del				
Input File: C	n on: 12/2 version: / C:\Docum	2/2006 9 AFT Fati ents and	hom Vers d Settings	ion 6.0 (200	esktop\Dav						ledia Test Loop.fth	
Execution T Total Numb Total Numb Total Numb Number Of Number Of Matrix Meth	er Of Hea er Of Flo er Of Ter Pipes= 8 Junctions	ad/Press w Iteration mperatur s= 8	sure Iterat ons= 34 re Iteratio									
Pressure/He Flow Rate 1 Temperatur Flow Relaxa Pressure Re	Tolerance e Tolerar ation= (A	= 0.000 nce= 0.0 utomati	1 relative 001 relati c)		•							
Fluid Datab Fluid= Zinc Density= 17 Viscosity= 0 Vapor Press	Constant Fluid Property Model Fluid Database: Unspecified Fluid Zinc Chloride Density= 1700 kg/m3 Viscosity= 0.0068 kg/sec-m Vapor Pressure= Unspecified Viscosity Model= Newtonian											
Atmospheri Gravitationa Turbulent F Laminar Flo	al Acceler Iow Abov	ation= 1 e Reyno	l g olds Numl									
	w= 3.691 ressure i	E-07 ga s 49.27	ıl/min psia at Ju	Inction 8 Inle								
Pump Sum	mary											
Jct Nam	Flo (gal/		(feet)	Overall Power (hp) 0.1962								
Valve Sumr	narv											
Jct Nam	ne V	alve ype	Vol. Flow (gal/mir	Mass Flow (Ibm/sec	dP Stag.	dH (feet)	P Inlet Static (psia)	Cv	к	Valve State		
8 Va	ve RE	GULAR				42.92	49.27	2.299	204	4.0 Open		
Reservoir S	ummarv											
		Туре	Liq. Height	Liq. Elevation	Surface Pressure	Liquid Volum			et Flow	Net Mass Flow		
			(feet)	(feet)	(psia)	(feet3)) (lbm) (gal	/min)	(lbm/sec)		
1 Res	servoir	Infinite	N/A	6.000	14.70	N/	A N	A	0	0		
Pipe Output	t Table											

Porous Media Test Bed Final Report

	athom 6.0 HILL	output				(2 of 2)				12/2/
					AF	T Fathom Mo	odel			
ipe	Name	Pipe	Vol.	Velocity	dH	P Static	P Static]		
		Nominal	Flow Rate			In	Out			
		Size	(gal/min)	(feet/sec)	(feet)	(psig)	(psig)			
1	Pipe	2 inch	9.912	0.9477	0.003117		0.3508			
2 3	Pipe Pipe	1 inch 1 inch	9.912 9.912	3.6794 3.6794	0.080641		34.0874 34.3555	1		
3 4	Pipe	1 inch	9.912	3.6794	0.040320		34.5724	1		
5	Pipe	1 inch	9.912	3.6794	0.302403	1 1	5.4814			
6	Pipe	1 inch	9.912	3.6794	0.161281		5.2919	1		
7	Pipe	1 inch	9.912	3.6794	0.443524		0.8408	1		
8	Pipe	1 inch	9.912	3.6794	0.044862	0.7701	0.0000]		
June	ction Tabl	<u>9</u>								
xt	Na	ame	dP Static	P Static	P Static	Vol. Flow		ss Flow	Loss	
			Total	In	Out	Rate Thru J		Thru Jct	Factor (K)	
+		Dea	(psid)	(psig)	(psig)	(gal/min)		m/sec)	4.5000	
2		Reservoir Pump			N/A 34.1468	N 9.9	/A 12	N/A 2.344	1.5000	
		Bend		1 1	0.7701	9.9		2.344	0.0000	
		Bend			5.2211	9.9		2.344	0.4561	
;		Bend			5.4107	9.9		2.344	0.4561	
;	General	Component			34.2633	9.9		2.344	4.1588	
'		Bend			34.0167	9.9		2.344	0.4561	
3		Valve	31.63185	34.5724	2.9406	9.9	12	2.344	204.0000	
-	-	pe Loss	Factor (K)							
1		ir. Out	0.5000							
	P8	In	1.000							

9.5.AFT Fathom Output (High Flow Rate)

	athom 6.0 C	Dutput				(1 o ⁻	f 2)					12/2/2006
CH2N	I HILL					AFT Fatho	om Model					
<u>Gener</u>	al											
Analys Applic Input	File: C:\Doci	2/2/2006 9 n: AFT Fat uments and	hom Versi d Settings∖	on 6.0 (200	esktop\Davi						dia Test Loop.fth	
Total I Total I Total I Numb Numb	tion Time= (Number Of I Number Of I Number Of ⁻ er Of Pipes= er Of Junctio Method= G	Head/Press Flow Iterati Temperatu = 8 ons= 8	sure Iterati ons= 16 re Iteratior									
Flow F Temp Flow F	ure/Head To Rate Tolerar erature Tole Relaxation= ure Relaxati	nce= 0.000 rance= 0.0 (Automati	1 relative 001 relativ c)									
Fluid I Fluid= Densit Viscos Vapor	ant Fluid Pro Database: U Zinc Chlorio ty= 1700 kg/ sity= 0.0068 Pressure= sity Model=	Inspecified de /m3 kg/sec-m Unspecifie	d									
Gravit Turbu Lamin	pheric Pres ational Acce lent Flow At ar Flow Belo nflow= 1.51	eleration= 1 oove Reyno ow Reynolo	l g olds Numb ds Numbel									
Total (Maxin	Outflow= 1.5 num Pressu	511E-06 ga re is 31.38	ıl/min psia at Ju	nction 2 Out action 2 Inlet								
Pump	Summary											
Jct		Vol. Flow	P	verall ower								
2	Pump			(hp)).3259								
Valve	Summary											
Jct	Name	Valve Type	Vol. Flow	Mass Flow	dP Stag.	dH	P Inlet Static	Cv	К	Valve State		
	Valua		(gal/min) (psid)	(feet)	(psia)	71.65	0.2400	Onor		
8	vaive 1	REGULAR	31.1	9 7.37	<u>+ 0.3224</u>	0.4374	24.54	71.65	0.2100	Open		
Reser	voir Summa	ıгу										
Jct	Name	Туре	Liq. Height	Liq. Elevation	Surface Pressure	Liquid Volume	Liquid Mass	Net Vol. Flov		et Flow		
	Dea	- Inf. 1	(feet)	(feet)	(psia)	(feet3)	(lbm)	(gal/min) (lbm	/sec)		
1	Reservoir	Infinite	N/A	6.000	14.70	N/A	N/A		0	0		
Dina												
-ipe (Dutput Table	2										

Porous Media Test Bed Final Report

AFT Fa CH2M I	thom 6.0 ⊣III I	Output		(2 of 2)				
GHZIWH					AI	FT Fathom	Model	
Pipe	Name	Pipe	Vol.	Velocity	dH	P Static	P Static	
		Nominal	Flow Rate			In	Out	
		Size	(gal/min)	(feet/sec)	(feet)	(psig)	(psig)	
1	Pipe	2 inch	31.19	2.982	0.02371	0.2157	0.1983	
2	Pipe	1 inch	31.19	11.578	0.59660	16.6811	16.2414	
3	Pipe	1 inch	31.19	11.578	0.29830	15.5413	15.6899	
4	Pipe	1 inch	31.19	11.578	0.59660	9.9175	9.8463	
5	Pipe	1 inch	31.19	11.578	2.23724	9.5239	10.6388	
6	Pipe	1 inch	31.19	11.578	1.19320	9.9387	9.0593	
7	Pipe	1 inch	31.19	11.578	3.28129	8.3591	1.8873	
8	Pipe	1 inch	31.19	11.578	0.61083	1.1872	0.0000	

All Junction Table

Lat	News	ID Otatia	D Ctatia	D Chatia	Val Elaur	Mana Elaw	1
Jct	Name	dP Static	P Static	P Static	Vol. Flow	Mass Flow	Loss
		Total	In	Out	Rate Thru Jct	Rate Thru Jct	Factor (K)
		(psid)	(psig)	(psig)	(gal/min)	(lbm/sec)	
1	Reservoir	N/A	0.0000	N/A	N/A	N/A	1.5000
2	Pump	-16.4829	0.1983	16.681	31.19	7.374	0.0000
3	Bend	0.7002	1.8873	1.187	31.19	7.374	0.4561
4	Bend	0.7002	9.0593	8.359	31.19	7.374	0.4561
5	Bend	0.7002	10.6388	9.939	31.19	7.374	0.4561
6	General Component	5.7724	15.6899	9.918	31.19	7.374	4.1201
7	Bend	0.7002	16.2414	15.541	31.19	7.374	0.4561
8	Valve	0.3224	9.8463	9.524	31.19	7.374	0.2100

Junction Loss Table

Jct	Pipe	Pipe	Loss Factor (K)
	#	Dir.	
1	P1	Out	0.5000
	P8	In	1.000

9.6. Flow Rate Calculations

The ranges of Reynolds numbers dictate the flow rate of the system. Based on the design requirements the flow loop is to operate between Reynolds numbers of 200 and 400. The flow rates associated with this range can be found by the making the following assumptions and calculations. The quoted Reynolds number is the average Reynolds number through the pore of the porous media. If D is the bead diameter, V_{pore} is the average velocity through the pore of the porous media, and the working fluid has a viscosity of v, then the pore Reynolds number has the following form:

$$\operatorname{Re}_{pore} = \frac{DV_{pore}}{V}.$$
 (Eqn. 9.6.1)

Solving for the pore velocity, and recognizing that the average pore velocity can be estimated by dividing the macroscopic velocity by the porosity of the porous media, the above equation becomes,

$$V_{pore} = \frac{V}{\varepsilon} = \frac{v \operatorname{Re}_{pore}}{D} \quad (\text{Eqn. 9.6.2})$$

Upon making appropriate substitutions for the macroscopic flow rate, the flow rate for the system can be solved and determined by,

$$Q = \frac{\varepsilon v A \operatorname{Re}_{pore}}{D} \quad (\text{Eqn. 9.6.3})$$

See Table 9.6.1 below for a summary of the flow rates the flow loop is designed for.

Table 9.6.1: Flow Rate Final Calculations

	Flow Rate Final Calculations									
	Reynolds Number		Porosity	Viscosity (m^2/s)	Flow Channel	Area	Bead Diameter (mm)	Flow Rate (gpm)		
			Porosity	viscosity (117-2/5)	Dimension (m)	(m^2)	Deau Diameter (mm)	Flow Rate (gpill)		
	MIN	200	0.3	4.00E-06	0.139	0.019321	6	12.25		
	MAX	400	0.5	4.00E-00	0.139	0.019321	0	24.5		

9.7. Pump Horsepower Preliminary Calculation

A maximum estimate of horsepower for the pump can be determined by analyzing the flow loop. From the schematic in Figure 9.7.1, the system is a closed loop drawing and delivering to the same reservoir.

Figure 9.7.1: Porous Media Flow Channel Schematic

The steady flow energy equation (Bernoulli's equation) applies. And also accounting frictional head losses in the pipe, minor losses in the elbows and valves, and the head loss across flow channel, the equation then becomes [24],

$$\left(\frac{p_1}{\rho g} + \frac{V_1^2}{2g} + z_1\right) = \left(\frac{p_2}{\rho g} + \frac{V_2^2}{2g} + z_2\right) + h_f + h_m - h_p \quad \text{(Eqn. 9.7.1)}$$

Observing the fact that the reservoir is the same for both states, the pump head then becomes,

$$h_p = h_f + h_m$$
 (Eqn. 9.7.2)

The pump head then can be determined from any appropriate source. Here the source, Ingersoll-Rand Cameron Hydraulic Data, was used. The head loss can be calculated from their appropriate tables. In this preliminary calculation steel pipe was chosen as the material, an appropriate estimated length of pipe and fittings were decided upon, and "worst case" flow rate was used (24-gpm). From Cameron Hydraulic Data [23], the pump head becomes,

$$h_p = L(h_{100}) + \left(\sum K_i\right) \left(\frac{V^2}{2g}\right) + h_{FC}$$
 (Eqn. 9.7.3)

where,

$$\begin{split} h_{100} &= \text{head loss per 100 feet} \\ K_i &= \text{resistance coefficient} \\ h_{fc} &= \text{flow channel head.} \end{split}$$

The above equation was implemented into a spreadsheet and as a first pass a value was determined for the horsepower (see Table 9.7.1).

Table 9.7.1: Pump Hor	rsepower sp	reausileet	
Pump Horsepower Spreadsheet			
Pipe Data:			
Pipe Diameter	1		
Flow Rate	24		
Velocity	8.904		
Velocity Head	1.23264		
Head Loss/100-ft	35.8		
Frictional Pipe Losses		Head Loss	
Length of Pipe	20	7.16	
	20	7.10	
Minor Losses			
Effect	No.	K	Total K
Entrance and Exits	2	1	2
Elbows	6	0.57	3.42
Valves	1	7.8	7.8
Enlargement (in)	1		2.58356126
Enlargement (out)	1	0.7949419	0.79494193
Grand Total K			16.5985032
Total Minor Losses			20.459979
Losses Due to Porous Media at 20-			
gpm	ft		
Porous Media	8.04		
Honeycomb			
Pump Head	35.65998		
hp	7.362037		
1.5*hp	11.04306		

Table 9.7.1: Pump Horsepower Spreadsheet

Unfortunately, this number seemed to be on the extreme high side. It is presumed that this difference lays in the fact that the roughness coefficient of steel is 2 orders of magnitude larger that PVC. However a much more efficient way to determine an estimate for the horsepower of the pump is to employ the uses of AFT Fathom (see Appendices E and F for output). This program provided a more reasonable estimate for horsepower at 1-hp maximum.

9.8. Wall Thickness Calculations

The ASME pressure vessel code gives the following formulas to determine wall thickness for non-circular plates and flat covers which is analogous to the wall design of the test section presented in this document [29,30].

 $t = d\sqrt{(ZCP/(SE))}$ (Eqn. 9.8.1)

where,

PI: W Le

$$Z = 3.4 - (2.4d/D) \le 2.5$$
 (Eqn. 9.8.2)

where the variables are defined as:

d = effective diameter of the flat plate (in)

C = corner detail coefficient (chosen to be 0.2 as a conservative estimate)

P = design pressure (psi)

S = allowable stress at the design temperature and pressure (psi)

E = butt-welded joint efficiency of the joint within the flat plate (E=1 in this design)

t = minimum required thickness of the flat plate (in)

For ABS plastic, it was determined that wall thickness should be at least 0.244 in to meet pressure vessel standards. With a conservative factor of safety of 2, wall thickness comes to approximately 0.5 in. The final design thickness was approximately 1 in which was largely dictated by the Intro-Serts. Details of the calculations can be seen in Table 9.8.1.

		Finding Plate Thickness for a Pressure Vessel				
Plate Dimensions						
Vidth (m)	0.15	d (small length) (in)	5.905512			
.ength (m)	0.31	D (large length) (in)	12.20472			
		C (corner detail coefficient, referenced from page 99)	0.2		Z (non-uniform membrane correction factor)	2.23871
		P (design pressure) (psi)	30	1	t (minimum plate thickness) (in)	0.245
		S (allowable stress at design temperature & psi) (psi)	7830	i	Thickness with factor of safety (in)	0.489
		E (joint efficiency of the joint within the flat plate - if no	1		Tickness with factor of safety (m)	0.012
		N factor of safety	2			

Table 9.8.1: Wall Thickness Spreadsheet

9.9. Cumulative Force Calculations on Honeycomb Flow Straightener

As depicted in Figure 9.7.1, the flow channel will be oriented vertically, with the direction of flow along the component of gravity. The flow straighteners will be oriented perpendicular to the flow, and thus the downstream flow straightener will be supporting the weight of the beads and the force created by the pressure drop across the beads of the porous media. Consideration must be given to the magnitude of the resultant force that is supported on the honeycomb flow straightener.

The total weight of the beads in the porous media test bed can be approximated by,

$$W_{GB} = g(1-\varepsilon)V_T \rho_{GB} = \left(9.8\frac{m}{s}\right)(0.7)\left(0.280(0.139^2)m^3\right)\left(2.23(10^3)\frac{kg}{m^3}\right) = \dots = 18.5 - lbs$$
(Eqn. 9.9.1)

Where V_T is the total volume of the test section, p_{GB} is the density of borosilicate glass beads, and epsilon is the porosity.

The resulting force due to the pressure drop across the glass beads of the porous media can be approximated by,

$$F_{dP} = dPA_c = (21.4kPa)(0.139m)^2 = ... = 93.0 - lbs$$
. (Eqn. 9.9.2)

Where A_c is the cross-sectional area of the flow channel and the dP is the pressure drop at maximum flow.

The total force that the flow straightener is support is 111.5-lbs. Invoking a safety factor of two, the total approximate weight is thus 200-lbs. An applications engineer for the flow straightener was contacted to see if this force could be supported by polycarbonate flow straightener, and it was determined that a minimum of one inch should be used. The design presented in this paper uses a 30 mm flow straightener.

9.10. Viewing Window Thickness Calculations and Spreadsheet

Tuble 7.1011. Diffice Theory							
Conv	ersion	Pro	(units)				
(psi)	(Mpa)	E =	64000	MPA			
30	0.20684271	σ=	3.5	MPA			
		Po =	0.41368542	MPA			
Formula C	omponents	Wind	ow Size	(units)			
Formula C Moment =	omponents 212.2206205		ow Size 100	(units) (mm)			
Moment =		height	100	(mm)			

Table 9.10.1	: Brittle	Plate	Theory
--------------	-----------	-------	--------

Equations in Spreadsheet

Brittle Plate Theory [26]:

$$M = 0.0513 (nP_o) a^2$$
 (Eqn. 9.10.1)

$$\sigma = \frac{(6M)}{h^2} \qquad (\text{Eqn. 9.10.2})$$

where:

 σ = max tensile stress P_o = pressure applied to surface a = length of sides M = moment caused by bending n = factor of safety

9.11. Component Source Datasheet

Industria	l Plast	t ic Supply, Inc Massive		pry	Expert Assistance - Call Us Now.		
Home Products Price Pages FDA Compliant Products Request a Quote About Us Contact Us							
Saturday December 02. 2006	Paymer	nt Options	FAQ	/Amana Saw Blades /			
VIEW CART CHECKOUT	2480/JV 6	INFOCIOUSII TRASIDUS	Q0y.	ÇRIT Pisique	19(16))))))		
		ABS Sheet - ,250 Colors and Sizes; White 12" x 12"	1	opt : \$5.83	\$5.83		
Call 866-832-9315 For		ABS MG Sheet-1.25 Colors and Sizes; Natural 24" x 24'	1	opt : \$182,40	\$182.40		
Additional Assistance		ABS MG Sheet-2.00 Colors and Sizes; Natural 24" x 24"	1	opt : \$289.07	\$289.07		
			SHOP	Subte	otal: \$477.30		
		Industrial Pl 866- request@	832-93	15	MoreNetBIZ		

Figure 9.11.1: ABS Plastic Source Data Sheet

2CO	Choose your Currency For non-UE oursency, paym are Imited to Visa and Mast New Order Details	Way to Pay! No Wallet. No Wait. No Worries. ³⁰ with 28		1
2CO.COM 1785 O'Brien Rd Columbus, OH 43228 <u>Contact Us</u>	Order Number 35 International s	561065120 shipments are only shipped on customer's UPS, FedEX or D	DHL accounts. A \$30.00	Charge
VERIFIED by VISA	Qty	apply. Purchase Item	Price	Total
MasterCard. SecureCode.	MasterCard. SecureCode. 1 KS-8505, 6.00" x 12" x 24" -Standard-Natural, UHMWPE Sheet-			
RELIA BLUTY	Handh	Ing		\$ 34.3
	Total	No Wallet, No Wait, No Worries,™		\$ 548,7
Bhopping vith us is sefe. Guaranteed.	Continue Shop	Checkout Bill Me Later® <u>View Details</u> pping Save Changes Save and Check Out	<u>8</u>	

Figure 9.11.2: UHMW Plastic Source Data Sheet
FAX (215) 659-7217

SPECIALTY GLASS PRODUCTS, INC.

2885 TERWOOD RD., WILLOW GROVE, PA 19090 USA

PHONE (215) 659-8400

Email: sales@sgpinc.com www.sgpinc.com

November 30, 2006

Inquiry #I06112904 (1), #I06112806 (2)

Travis Wilhelm

Oregon State University

1942 Madras Street SE

Salem, OR 97306

Ph; 503-459-3599

wilhelmt@engr.orst.edu

Dear Travis:

Thank you for the opportunity to support your specialty glass requirements. In response to your recent request, SGP is pleased to propose the following:

 Schott Borofloat Square; 120mm+-.25mm square; 20mm+-.25mm thick; 4 corners approximately 7.5mm radius; seamed edges; top and bottom surfaces polished finish.

Figure 9.11.3.1: Viewing Window Source Data Sheet

Quantity	1 piece	Price	\$275.00 each
	2 pieces		\$190.00 each
	5 pieces		\$155.00 each

Ship Start 4 weeks ARO

 Schott Borofloat Square; 120mm+-.25mm square; 25mm standard thickness; 4 corners approximately 7.5mm radius; seamed edges.

Quantity	1 piece	Price	\$175.00 each
	2 pieces		\$139.00 each
	5 pieces		\$ 95.00 each

Ship Start 3 weeks ARO

Terms FOB Willow Grove, PA. Net 30 days.

or

Terms Credit Card, FOB Willow Grove, PA.

Travis, if you have any questions concerning this quotation, or if you would like to place an order, please contact Ursula Leslle, Customer Service/Support (ursula@sgpinc.com).

Best regards,

Beau Harrington

Sales Engineer

Figure 9.11.3.2: Viewing Window Source Data Sheet

SEARCH for		within	All of VWR.co	m 💌	GO Advar	nced Se	arch M	SDS Ce	rtificate of Analysis
lome	Products	Servic	es Prog	rams F	Request a C			out Us	Contact Us
CHOOSE CATALOG									YOU MIGHT ALSO NEED
General Catalog	KIMAX*	Brand S	olid	Find S	imilar Itei	ms in	Produ	ct	TOO HIGHT ALSO NEEL
Chemical Catalog	Borosill	cate Gla	ss Beads	; Catego	ory Glassw	vare,	Life So	cience	100000
Life Science Catalog				C Supp	lier: Kimble				10000
Production Supplies Catalog				GO					. MURRAY
Furniture Catalog					most cold liqui				VWR* General-Purpose
VWR Collection Catalog					ixing beads, b s are durable a				Thermometers VWR International
Safety Cataloo			ffect delicate			and will	noc aisin	tegrate	
Request a Catalog									
VWR PROGRAMS	i date inte		with a	144					
BioScience Research	Contraction of the local division of the loc	tota	I volume of 3	60cm².					B each.
Calibration & Metrology									
Services					ADD TO BASKET	VIEW	SHOPPING	BASKET	HyQ* Liquid Tissue Cultu
Chemicals		Approx.	Approx.						Media, HyClone*
Chromatography	Approx. Diameter,	No.	No. of Beads		VWR	Hait	Price	Oty	Hyclone
Furniture	mm	per	per	Kimble* No.	Catalog #	onic	Price	Qty	
Healthcare/Clinical		cu. in.	Container	NO.					
Lab Animal Science	3	550	12,000	13500 3	89001-052	Case	\$194.27	0	
Leasing Program									and the second
Life Science	4	250	5200	13500 4	89001-516	Case	\$171.22	0	VWR* Enviro-Safe*
Site Services Lab Set Up Resource	5	125	3000	13500 5	89001-518	Case	\$127.07	0	Thermometers VWR International
Center				12500 0		~	4100.0-		
Oligo Configurator	6	75	1800	13500 6	89001-520	Case	\$138.31	0	
Production Supplies					ADD TO BASKET	VIEW	SHOPPING	BASKET	
Calaby									
Safety									

Copyright© 2006 VWR International. All Rights Reserved

Figure 9.11.4: Glass Beads Source Data Sheet

Socket Head Cap Screws

Technical drawings and 3-D models

steel in sizes marked with ■. Please ask for 94722A200 and specify

Hex Key and Head Dimensions, mm

M2 M2.5 M3 M4 M5 M6 M8

1.5 2 2.5 3 4

1.5 1.65 2.2 2.75 3.3

4.5 5.7 7.6 9.5 10.5

M12

5 6 8

4.4

14 17.321

Black-Oxide Alloy Steel Torx Button Head -

Drive offers improved driveability and reduced bit slippage. Screws offer a wider bearing surface and low head height. Because of the head configuration, these screws are not recommended for use in high strength applications where socket head cap screws should be used. Finish offers mild rust resistance and some lubricity. Class 3A thread fit. Rock-well hardness is C39-C44. Min. tensile strength is 145,000 psi. Length is measured from under head. Fully threaded. For Torx tools, see pages 2683-2684 and 2698-2699. For head dimensions, see page 2978.

thread size and length

1.3

1.3

3.5

Full Full 18 20 22 24

Screw Size

Key Size

Head Ht.

Head Dia.

Min. Thread

	Pkg.		Pkg		Pkg			Pkg.	
Lg.	Qty.	Per Pkg.	Lg. Qty.	Per Pkg.	Lg. Qty.	Per Pkg.	Lg.	Qty.	Per Pkg.
4-40		Torx Key: T8	8-32	Torx Key: T15	10-32	Torx Key: T25	"/n/~	18	Torx Key: T40
- W ^a	100	96452A106\$11.92	V4" 100.		3k"100.	96452A311\$14.05	V2"		96452A578\$9.61
3h*	100	.96452A108. 12.57	‰* 100.	96452A192 13.76	1/2*100.		V_{4}^{μ}		.96452A581 10.84
· 1/2"	100	96452A110. 12.89	Vz" 100.		%" 50.	96452A319 8.53	1°	25	.96452A585 6.84
6-32		Torx Key: T10	34° 100.		1. 50.		- 11/-1	6	Torx Key: T45
- W	100	.96452A144.\$12.43	10-24	Torx Key: T25	Wr-20	Torx Key: T27	V2".	25	96452A619\$7.50
34°	100	.96452A146. 12.57	V4° 100.	96452A238\$13.89	3k" 100.	96452A535\$14.86	- Ma ^w	25	96452A622
1/2"	100	.96452A148. 13.16	Vz" 100.	96452A242 14.51	½"100.	96452A537 14.70	1.1%*.	25	96452A62810.63
- W ^a	100	96452A150. 13.97	34° 100.		34"100.	96452A540 14.93			
			1* 50.	96452A246 10.30	1ª 50.				

Metric Button Head—Hex Socket Use for a wider bearing surface and low head height. Not for use in high strength ap-pications. Length is measured from under head. Screws indicated with a 4 are always fully threaded. 18-8 stainless steel offers ex-cellent corrosion resistance. May be mildly magnetic. Not tested for Rockwell hardness. Min. tensite strength is 101.000 psi. Class 6g thread ft, Class 10.9 black-oxide steel's comparable to Grade B. Finish provides mildly ust resistance. Rockwell hardness is C32-C39. Minimum tensile strength is 145,000 psi. Class 5g/6g thread ft. Lico Arminized Screws in high-visibility blue-coated Class 10.9 Lo. Pko.

.g., Pkg. nm Qty. Per Pkg.	Lg., Pkg. mm Qty.	Per Pkg.	Lg., Pkg. mm Qty.	Per Pkg.	Lg., Pkg. mm Qty. Per Pk
18-8 Stainless Steel—ISO 7380				9 Black-Oxide Steel-	
43 Pitch: 0.5 mm	M6 (Cont.)		M2.5	Pitch: 0.45 mm	M6 (Cont.)
510092095A177 + \$10.37 610092095A179 + 3.72	1425 1625	92095A227 \$9.31 92095A238 4.76		91239A752 \$5.83 91239A755	18 5091239A323
610092095A179 A 3.72 810092095A181 A 6.50	1625	92095A2384 4.76 92095A2404 5.48		91239A7554 10.63 91239A7584 13.13	2010091239A326 + 11. 225091239A324 + 7.9
010092095A18248.28	25 25	92095A242 6.26	M3		2510091239A327 += 13.0
2 100 92095A183 4 11.87	3025	92095A244 7.26		Pitch: 0.5 mm 91239A1104 \$8.56	30 100 91239A328 + 14.0
4 50 92095A168 5.00	35 25	92095A246 8.22		91239A111 5.60	35 2591239A330 5.
6 100 92095A184 4. 13.34	4025	92095A248 9.64		91239A113 5.24	40 2591239A332 6.1
010092095A1858.09 510092095A1867.98	4510	92095A250 4.75		91239A115 5.60	45
0 100 92095A187 8.05	50 10 55 10	92095A252 6.24 92095A253 6.29		91239A117 6.40	55 10 91239A337 5.4
5 25 92095A201 4.79	6010	92095A254 6.72		91239A1184 9.43 91239A1204 7.39	60 5 91239A340 2
0 25	MB	Pitch: 1.25 mm		91239A120 7.39 91239A122 9.00	M8 Pitch: 1.25 m
14 Pitch: 0.7 mm	1025	92095A256 \$11.63		91239A126 13.21	10 25 91239A414 + \$5.
610092095A188\$7.62 810092095A189	1225	92095A258 9.89	M4	Pitch: 0.7 mm	12 2591239A416 + 5.
0100	1625	92095A260 9.38 92095A284 10.55		91239A138	14 5091239A417 12.9
2 100 92095A192 4 9.93	2025 2510	92095A284 10.55 92095A2864 5.05	8100	91239A140 # 7.39	16 2591239A418 ▲■ 4.1 18 5091239A420 ♣
4 50 92095A193 4 6.90	3010	92095A290 5.72		91239A144 7.39	
6 100 92095A194 4 9.05	3510	92095A292 6.19		91239A148 7.25	20 2591239A426 5. 25 2591239A427 4 5.
0	4010	92095A2944 6.48		91239A149 11.07	30 25 91239A428 + 6
0 50 92095A198 8.14	45 10	92095A296 9.28		91239A1504 8.26 91239A1524 8.40	35 25 91239A438 + 7.
5 25 92095A199 4.68	50 5	92095A298 4.90	25100	91239A154 10.43	40 2591239A442 + 7.1
2592095A200	55 5 60 5	92095A299 8.21		91239A156 10.40	45 1091239A444 4.9
25 92095A205 5.85	60 5 M10	92095A300 5.86 Pitch: 1.5 mm		91239A158	50
0	16 10	92095A4084		91239A160 6.84	60 10 91239A453 7.
10092095A207 4\$10.48	20 10	92095A4104 7.62	M5	Pitch: 0.8 mm	70 10 91239A455 10.
010092095A208 410.48	25 10	92095A413 9.14		91239A220\$10.22	80 1091239A457 7.9
2 100 92095A210 4. 11.90	3010	92095A4164 9.52		91239A222 10.00 91239A224 6.96	M10 Pitch: 1.5 m
4 50 92095A211 4 12.05	40 10 50 10	92095A420		91239A2284 6.25	16 2591239A512 ##\$10.
510092095A212 13.34 5092095A214 7.81	55	92095A426 10.24		91239A230	18 591239A511 9.4
050.92095A214 7.81 525.92095A216 4.88	60 5	92095A429 11.43	16100	91239A232 4 7.83	20 2591239A513 4 8. 25 2591239A514 8.
25. 92095A218 4. 5.95	M12	Pitch: 1.75 mm		91239A241	30 2591239A515 A 10.0
25 92095A220 6.43	20 10	92095A428 \$10.71		91239A233 = 8.00	35 10 91239A518 4
0	25 5 30 5	92095A4274 5.90 92095A4314 6.55		91239A242 14.79	40 1091239A521 + 5.0
52592095A2237.42 02592095A2289.76	35 5	92095A4324 9.24		91239A234 8.80	45 1091239A523 6.0
02592095A2289.76 01092095A2256.48	40 5	92095A4344 10.78		91239A236 10.00	50 591239A525 5.
6 Pitch: 1 mm	45	92095A435 10.76		91239A238	M12 Pitch: 1.75 m
25 92095A239 4 \$6.99	50	92095A437 11.88		91239A244 4.61	16 591239A610 \$5.0 20
0	55 5	92095A440 14.88	MG	Pitch: 1 mm	25 1091239A614 4 6.0
2 50 92095A226 8.10	60 5	92095A442 13.93		91239A3144 \$9.91	30 10 91239A616 # 7.
lass 10.9 Black-Oxide Steel				91239A316 9.13	35 591239A618 4.
2 Pitch: 0.4 mm	M2 (Cont.)			91239A318 8.46	40 591239A620 4.
3	625 1225	91239A704 \$12.16 91239A707 13.93		91239A319 14.09	45
ISO 7380 250-Pc. Assortment—Ha				91239A321♣■ 10.43 M5×25.30: M6×16.20	
hex keys—2 each of 2.5, 3, 4, and	5 mm. Fum	ished in a 10%* Lg.×6½*	Wd.×1%e* D	p. compartmented plast	ic case with lid chart.
0115A032					Each \$45.
					McMASTER-CAR

Figure 9.11.5: Cap Screw Source Data Sheet

Dimensions for Type 314 True Union Diaphragm Valve PVC (solvent cement socket ends)

Inch	A	B	D	F	K	H	l	T	Z	Lift	Weight
size	inch	inch	inch	inch	mm	inch	inch	Inch	inch	inch	Ibs.
1/2 3/4 1 1-1/4 1-1/2 2	0.55 0.69 0.83 1.00 1.28 1.54	1.69 2.09 2.36 2.91 3.27 4.06	3.15 3.15 3.70 4.61 4.61 5.98	0.98 0.98 0.98 1.77 1.77 1.77	M6 M6 M8 M8 M8	3.54 4.02 4.67 4.96 5.47 6.77	5.04 5.98 6.54 7.56 8.74 10.47	.47 .47 .59 .59 .59	3.78 4.49 4.80 5.51 6.30 7.48	0.32 0.43 0.51 0.63 0.83 1.10	0.88 1.32 1.98 2.65 3.53 6.17

Figure 9.11.6: Diaphragm Valve Source Data Sheet

OMEGA's PX26 Series pressure sensors feature state-of-the-art silicon technology which permits both sides of the diaphragm to handle liquids. A unique conductive seal between the silicon diaphragm and the plastic housing allows for wet/wet applications and lower production costs than typical gold wire silicon sensors. This new construction has a larger diaphragm than traditional silicon sensors, resulting in increased long-term stability.

SPECIFICATIONS

Excitation:10 Vdc, 16 Vdc max @ 2 mA Output (@ 10 Vdc):1 psi = 16.7 mV, 5 psi = 50 mv; >5 psi = 100 mV; 250 psi = 150 mV Linearity: ±0.25% FS BFSL Typical (±1% maximum) P2>P1 Hysteresis and Repeatability:0.2% FS Zero Balance:±1.5 mV Span Tolerance: ±3.0 mV 1 Year Stability:0.5% FS Operating Temperature:-40 to 85°C (-40 to 185°F) Compensated Temperature:0 to 50°C (32 to 122°F) Thermal Effects: Zero: 1 mV Span: 1% Rdg Proof Pressure:20 psi for ≤5 psi; 45 psi for 15 psi ; 60 psi for 30 psi 200 psi for 100 psi range Input Resistance:7.5kΩ Output Resistance:2.5kΩ Response Time:1 ms Gage Type:Silicon sensor Wetted Parts: Polyethimide, silicon, fluorosilicone Mating Connector: CX136-4, (\$2.50), not included Weight:2 g (0.07 oz)

Figure 9.11.7: Pressure Transducer Source Data Sheet

PVC Pipe Fittings & Pipe

For information about selecting and measuring pipe and fittings, see pages 2-3. For information about plastic fittings and pipe, see page 61.

	Flange	Please Read Before measured size. To de (ID), as shown at left. I in the chart below OD or ID measures 1 pipe size is 1". For un pipe size.	termi For th and ।३४४°,	ne pipe reader select the ne	fittin fittin the o xt hig	first r gs, roi corres hest (neasur und up pondir DD or I	e the the m ig pip D in t	outsi easu be si he c	ide dia iremen ize. Fo hart is	meter (it to the or exal 13%, a	(ÕD) clos mple, and t	or in: est C , if 1 he c	side dia D or ID the thr orrespo	ameter) listed readed onding
Threaded		Threaded OD or ID	1/2"	%**	1/4*	1"	1%*	1%*	1%*	2%*	2%"	31/2*	41/2*	_	
Fitting	Unthreaded	Unthreaded ID or OD	0.54"	0.675*	0.84*	1.05*	1.315*	1.66*	1.9*	2.375*	2.875*	3.5*	4.5*	6.625*	8.625*
	Pipe	Pipe Size	$V_{4}^{\mu\nu}$	36°	V2*	3/4	1*	1%*	1%*	2*	21/2*	3*	4 *	6*	8*

PVC Unthreaded Pipe Fittings and Pipe—Schedule 80—Dark Gray (Cont. from previous pg.)

	o Bo)	=_ <u>+</u>	:	¢	9						0	-	
Pipe	Bolt Circle	No. of Bolt	Bolt	14 Dia.	50 psi AN Thick.	SI Flanges	Dia.	Loose Ri Thick.	ing Flang	95	Dia.	50 psi Bi Thick.	lind Flange	15
Size	(B)	Holes	Size	(A)	(C)	Eacl	1 (A)	(C)		Each	(A)	(C)		Each
1*	2%**		Vz* Vz* Vz*	3 ^{24/32} 4 ⁹ /32 4 ²¹ /32	11/32 19/32 21/32	881K212\$5.9 881K2136.3 881K2147.1 881K2157.3 881K2167.4	$3^{29/32}$ $4^{9/32}$ $4^{21/32}$	17/32*	.4881K231 .4881K232 .4881K233 .4881K234 .4881K234	5.13 5.72 5.89	31/2 37/6 49/32 411/16 5		4881K962 4881K963 4881K964 4881K965 4881K965 4881K966	\$13.41 15.99 21.84 26.80 26.80
3* 4* 6*	5 ½ 6 7 ½ 9 ½	4	% % %	7 7½° 9 103½2°	³ 1/ ₃₂ 4 11/ ₃₂ 4	881K217	4 3 71/2* 9 9* 7 10×1/32*		.4881K238 .4881K238 .4881K238 .4881K237 .4881K237		61916 7916 9 111/4		4881K967 4881K968 4881K969 4881K971 4881K972 4881K973	38.33 49.20 61.30 70.04
Pine			Max.	5-0 0	engths	10-ft. Lengt		ne		Max.	5-ft. Le	naths	10-ft. Le	naths
Size	OD	ID	psi		Each		ach Si	ze OD	ID	psi	0-10. LU	Each	10-11. 10	Each

Pipe Size	OD	ID	Max. psi	5-ft. Lengths Each	10-ft. Lengths Each	Pipe Size	OD	ID	Max. psi	5-ft. Lengths Each	10-ft. Lengths Each
****** ***** 1******	.0.675*. .0.840*. .1.050*. .1.315*. .1.660*.	0.407*. 0.528*. 0.724*. 0.935*. 1.256*.	920 850 690 630 520	.48855K41\$3.91 .48855K295.29 .48855K212.27 .48855K223.06 .48855K234.51 .48855K236.21 .48855K257.43	48855K11 3.91 48855K12 5.26 48855K13 6.77	21/2 3 4 6		2.289' 2.864' 3.786' 5.709'		.48855K27 21.03 .48855K28 30.74 .48855K42 58.72	48855K16\$15.45 48855K54 30.28 48855K17 34.70 48855K18 50.73 48855K52 96.88 48855K53146.93

PVC Unthreaded Pipe—Schedule 80—Transparent

This pipe provides optimum visibility and compatibility with standard PVC piping systems. It is ideal for dual-containment piping for quick identification of primary tubing where visual leak detection is critical. Pipe is UL 94 VO listed, material is FDA compliant, and NSF certified for drinking (potable) water. Maximum temperature is 140° F. Connections: Socket weld (unthreaded). For PVC cement and primer, see page 66.

Pipe Size	OD	ID	Max. psi	8-ft. Lengths Each	Pipe Size	OD	ID	Max. psi	8-ft. Lengths Each
¥4*		0.288"			11/2"	1.900*	1.476*		
3/8"	0.675*	0.407*	460	4740K19 10.16	2*	2.375*			4740K26 65.58
¥2*	0.840"	0.528"	420		21/2"	2.875*			
3/4*		0.724*		4740K22	3*				4740K28121.79
1*		0.935"			4*	4.500*			4740K31 178.05
1%*		1.256"							

PVC Threaded Pipe Fittings—Schedule 80—Dark Gray

All fittings except flanges are NSF certified for drinking (potable) water. Maximum temperature is 140° F. Meet ASTM D2464. Connections: NPT.

				0		.00	E
Pipe Size	90° Elbows Each	45° Elbows Each	Tees Each	Lg. Each	Caps Each	Unions Each	Hex-Head Plugs Each
V4 	4596K121 \$2.35 4596K122 2.35 4596K122 2.35 4596K122.18 4596K133.43 4596K153.43 4596K155.25 4596K155.91 4596K125 23.05 4596K125 23.05	4596K2253.51 4596K223.78 4596K244.76 4596K257.24 4596K269.10 4596K2713.50 4596K2122.81 4596K2836.70 4596K2952.66	4596K321 \$3.09 4596K322 3.09 4596K322 3.09 4596K33 3.43 4596K33 6.48 4596K35 6.87 4596K36 8.33 4596K37 8.96 4596K31 32.61 4596K31 32.61 4596K32 34.06 4596K32 53.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4596K3952.10 4596K412.10 4596K422.10 4596K422.36 4596K442.36 4596K464.02 4596K464.02 4596K467.92 4596K4818.63 4596K4928.02	4596K62 \$4.08 4596K63 5.70 4596K64 7.60 4596K66 17.94 4596K66 17.94 4596K67 23.57 4596K68 59.80	4596K7151.80 4596K721.80 4596K731.62 4596K731.67 4596K752.07 4596K752.07 4596K783.78 4596K833.69 4596K8312.32 4596K8112.32 4596K8220.50
			(Contii	nued on following pa	ge)		
68		Warning	Never use PVC	fittings and pipe with	h compressed ai	r or gas. M(M	ASTER-CARR

Figure 9.11.8: Flange Half Coupling Pipe Fitting Source Data Sheet

Extra-Firm	Sheets—Smooth Fini	sh				
	 Color: Black Temp. Range: –10 		Good recovery from Cut with shears	n compression	Firmness (25% Deflection), psi	10-19
	, .		ith and length tolera	nees are what for	Durometer Hardness	Not rated
	6"×6" sheets and ±		ion and length tolera	1005 010 2452 101	Tensile Strength, psi	Not rated
	Thick.	6" × 6"	12" × 12"	12" × 24"	Stretch Limit %	Not rated
	Thick. Tolerance	Each	Each	Each	Density, Ibs./cu. ft.	3.5-6.5
	1/4"±0.060"3		3156T13 \$82.48	3156T23\$148.46		
	1/4±0.0603		3156T14 134-54	3156T24 239.30		
	%*±0.080*3 1/2*±0.125*3		3156T15 199.77 3156T16 265.15	3156T25 332.96 3156T26 441.92		
3346					McMASTE	R-CARR

Figure 9.11.9: Gasket Source Data Sheet

Yardley Products Corporation

10 West College Avenue P.O. Box 357 Yardley, PA 19067-8357 Toll Free: (800) 457-0154 Telephone: 215-493-2723 Fax: 215-493-6796 E-Mail: info@yardleyproducts.com Web site: www.yardleyproducts.com

All Categories > Intro-Sert > INTRO-SERT Ultrasonic Insert - Metric Threads > Item # 3005H6-8SS

Item # 3005H6-8SS, INTRO-SERT Ultrasonic Insert - Metric Threads \$2.22 (<u>guantity discount</u> available)

INTRO-SERT Ultrasonic Insert - Metric Threads Yardley INTRO-SERT Ultrasonic Inserts offer plastic molders and users, impressive benefits in lower cost production and better quality assemblies. In addition, they offer a choice of installation methods with conventional high frequency ultrasonic production equipment or the Yardley Thermal Inserter for low volume work. Advantages: -Self-tapping, self-locking -Provide stronger, more durable permanent threads in soft metals and plastics -Supply permanent threads in cast iron that will not gall, seize, corrode or strip -Offer strong resistance to rotation and pull-out -Lead on both ends simplifies installation -Ideal for automated production

NOTE: For Quantities Over 50,000 Please Call 1-800-457-0154

Specifications

Serles	Regular
Construction	Stainless Steel
Metric Thread Size (A)	M3.0 x 0.5
Outside Diameter (+/005) (B)	.187
Length (+/005) (C)	.250
Starting Hole Size ABS	.154
Starting Hole Size Polycarbonates	.150
Base Materials	Thermoplastics, ABS, Polycarbonates
Installation Methods	Ultrasonic, Thermal

Print Back

Figure 9.11.10: Regular Insert Source Data Sheet

CORPANY Unique Solutions For Your Fasteni HOME ADVANTAGE PRODUCTS METHODS & TOOLS		CONTACT
Search Catalog By Part Number All Categories All Categories INTRO-SERT Ultrasonic Insert Metric Threads	View Cart View RFQ Shopping Cart Request for Quote	<u>0 Items</u> <u>0 Items</u> <u>0 Items</u> I Shipping I Tax I Terms
All Categories > Intro-Sert > INTRO-SERT Ultrasonic Ins Request Information Add to Cart Request		# 3005HR8-7SS
Item # 3005HR6-7SS, INTRO-SERT Ultrasonic Insert - \$2.2230 (<u>quantity discount</u> available)	- Metric Threads	 Printable Page Email This Page Save To Favorites
Yardiey INTRO-SERT U benefits in lower cost pr choice of installation me	roduction and better quality as	molders and users, impressive ssemblies. In addition, they offer a frequency ultrasonic production

larger image

Advantages: -Self-tapping, self-locking -Provide stronger, more durable permanent threads in soft metals and plastics -Supply permanent threads in cast iron that will not gall, seize, corrode or strip -Offer strong resistance to rotation and pull-out -Lead on both ends simplifies installation king for autometal perduction

-Ideal for automated production

NOTE: For Quantities Over 50,000 Please Call 1-800-457-0154

Spec	cifications	
Series	Short	
Construction	Stainless Steel	
Metric Thread Size (A)	M3.0 x 0.5	
Outside Dlameter (+/005) (B)	.187	
Length (+/005) (C)	.219	
Starting Hole Size ABS	.154	
Starting Hole Size Polycarbonates	.150	
Base Materials	Thermoplastics, ABS, Polycarbonates	

Figure 9.11.11: Short Insert Source Data Sheet

O-Rings—AS568A Dash Nos. 031-149

9 0	-	ee the O-ring ; , Silicone,					-			-		-		
ouna	Bu	ina-N (nitrile) is u								for previo 50° F. Duron			s is A70. Me	ets SAI
	Vii	 Color is black. Ion has excellent (1200, Color is black) 		cal and oil re	esistanc	e, Te	mperature r	ange is	-15°1	to +400° F. D	luromet	er hari	dness is A7	5. Meet
10	Si	J200. Color is bl leone has good lo	w and			esista	ince. Tempe	rature r	ange i	s -65° to +45	50° F. D	urome	ter härdnes	s is A70
-	EP	s FDA 21CFR.17 PDM (ethylene pr meter hardness i	opylet	Ne) is used in	applic	ation Color	s requiring r is black,	weathe	r resis	tance. Temp	erature	ränge	is -65° to	+212" F
S568A ash o.	Size, ID × OD	Actual Inch Size, ID×OD	Pkg. Qty.	- Buna-N Pe	r Pkg.	Pkg Qty.		r Pkg.	Pkg. Qty.	- Silicone Pe	r Pkg.	Pkg. Qty.	EPDM	Per Pkg
6 dth: 3	$136^{\circ} \times 136^{\circ}$	0.070" Actual) (Co 1.739" × 1.879"	ovit.) 100	9452K118	\$8.76	25			25.	9396K111	\$8.30	100	9557K123	
32 33	1% ×2 2 ×2%		100	9452K119 9452K121	9.27 9.78		9464K321. 9464K331.	10.14	25. 25.	9396K112 9396K113	10.36	100	9557K469 9557K124	13.00
34		1.989 × 2.129 2.114 × 2.254	. 100.	9452K122	10.32	25	9464K341.	10.73	25	9396K114	. 10.71	40.	9557K125	7.10
15 16		2.239 × 2.379 2.364 × 2.504	. 100.	9452K123 9452K124	10.83		9464K351 9464K361	5.40	25.	9396K115 9396K116	. 14.12	50. 50.	9557K126 9557K69	. 11.14
7		2.489*×2.629* 2.614*×2.754*	. 100.	9452K125	12.16	10	9464K371.	5.83	10	9396K117	5.39	50	9557K127 9557K71	12.86
8 9	$236^{*} \times 276^{*}$	2.739 × 2.879 2.864 × 3.004	100	9452K126 9452K127	12.38 12.40 12.45	10 10	9464K381 9464K391 9464K401	6.28	10.	9396K118 9396K119 9396K121	6.44	50. 50.	9557K128 9557K131	10.83
0			. 100.	9452K128				6.84	10.		6.70	25		8.38
2		2.989 × 3.129 3.239 × 3.379	100	9452K129 9452K131	12.50 13.24	10	9464K411 9464K421	7.05	10.	9396K122 9396K123	7.07	20. 25.	9557K132 9557K133	8.75
3		3.489 × 3.629 3.739 × 3.879	50 50	9452K132 9452K133	7.94	10	9464K431 9464K441	7.88	10.	9396K124 9396K125	7.63	15	9557K134 9557K135	8.83
5			50	9452K134	8.50	10	9464K451	8.55	10	9396K126	. 8.42	10.	9557K135 9557K136	7.20
7		4.239 × 4.379 4.489 × 4.629	50	9452K135 9452K312	4.48		9464K461 9464K106	8.98	10.	9396K127 9396K128	. 8.81	10	9557K137 9557K138	8.00
18	$4^{2}l_{s}^{*} \times 4^{7}l_{s}^{*}$	4.739"×4.879"	. 10.	9452K313	4.97	2	9464K511	3.36	10.	9396K129	12.43	10.	9557K139 9557K141	7.25
9 0	5 × 5 %	4.989 × 5.129 5.239 × 5.379	. 10.	9452K314 9452K315	5.40 5.56		9464K512 9464K513	3.77	10.	9396K131 9396K132	.13.18	10	9557K141 9557K142	7.31
idth: -	%2" Fractional (0.103* Actual)												
12 13		.0.049"×0.255" .0.081"×0.287"	. 100.	9452K316 9452K317	2.00		9464K107 9464K514	4.98	25. 50.	9396K133 9396K134 9396K135	2.74	100	9557K143 9557K144	7.31
14 15	Vσ × 916 932 × 1V32	0.112 × 0.318 0.143 × 0.349	100	9452K317 9452K318 9452K167	2.00		9464K514 9464K108 9464K515	5.06	50. 100.	9396K135 9396K136	5.08 9.60	100.	9557K144 9557K145 9557K146	7.75
16		0.174*×0.380*	100	9452K168	2.00 2.00	50	9464K109	5.14 5.14	100	9396K73	9.72	100.	9557K146 9557K147	6.40
)7 18	$\eta_{32} \times \eta_{32}$ $\eta_4 \times \eta_{16}$	0.206 × 0.412 0.237 × 0.443	100	9452K169 9452K171	2.00	50 50	9464K112 9464K113	5.14	50. 100.	9396K137	4.89	100. 100.	9557K72	7.14
9		0.299"×0.505"	. 100.	9452K172	2.24	50	9464K44	5.14 5.21	100.	9396K138 9396K74	9.93	100.	9557K148 9557K149	7.43
0		0.362 × 0.568 0.424 × 0.630	. 100	9452K22 9452K23	2.43	50 50	9464K23 9464K24	5.98 6.31	100.	9396K23 9396K24	10.11	100	9557K471 9557K472	9.48 9.67
2			100	9452K24 9452K25	2.89 2.90	50	9464K25 9464K26	6.63	100	9396K25 9396K26	12.14	100.	9557K473 9557K474	10.45
3. 4.	₩16 × ¾4 ₩6 × ¹³ /16	0.549 × 0.755 0.612 × 0.818	. 100	9452K26	2.90 2.94 3.06	50	9464K27	6.95	100.	9396K27	12.40	100	9557K475	10.82
5 6	11/16 × 1/6 2/4 × 15/36	0.674*×0.880* 0.737*×0.943*	100	9452K27 9452K28	3.06	50	9464K28 9464K29	7.81 8.54	50 50	9396K28 9396K29	7.78	50. 50.	9557K476 9557K477	5.70
7	1%16*×1*	0.799*×1.005*.	. 100.	9452K81	3.71		9464K81	9.56	50.	9396K139	8.73	50	9557K73	6.55
8 9.	1% × 11/16	0.862 × 1.058 0.924 × 1.130	100	9452K82 9452K83	3.93	50	9464K82 9464K83	9.99 10.63	50 50	9396K75 9396K141	9.40	50. 50.	9557K151 9557K152	7.58
0	1* × 1¥16*	0.987"×1.193"	100	9452K84	4.54	50	9464K84	.11.41	50	9396K142	11.87	50	9557K153	7.58
1 2	1 Vie* × 1 Vi* 1 Vie* × 1 Vie*	1.049*×1.255*. 1.112*×1.318*.	. 100.	9452K85 9452K86	4.84		9464K85 9464K86	.11.70	50. 25.	9396K76 9396K143	. 11.51	50. 50.	9557K154 9557K155	. 7.58
3		1.174*×1.380*	. 100.	9452K87	5.10 5.43	25	9464K87	6.82	25	9396K144	. 7.17	50	9557K155 9557K156	8.92
4 5	1%* ×1%* 1%** ×1%*	1.237*×1.443* 1.299*×1.505*	. 100.	9452K88 9452K89	5.66	25	9464K88 9464K89	6.94	25.	9396K77 9396K145	7.24	50. 50.	9557K157 9557K158	8.92
6	1%* ×1%**	1.362"×1.568"	100	9452K91	6.03 6.42	25	9464K91	7.85	25	9396K145 9396K146	8.24	50	9557K159	10.36
7 8	11/16 × 156 11/2 × 11/1/16	1.424 × 1.630 1.487 × 1.693	100	9452K92 9452K93	6.54	25 25	9464K92 9464K93	8.03	25	9396K147 9396K148	8.43	50. 50.	9557K161 9557K162	10.36
9	1% ×1%	1.549 × 1.755 1.612 × 1.818	100	9452K94 9452K95	7.35		9464K94 9464K95	9.20 9.74	25	9396K149 9396K151	9.42 9.57	50. 50.	9557K163 9557K164	11.61 11.61
1	11V16*×17%*		100	9452K136	8.73		9464K131	5.17	25	9396K152	10.42	50.	9557K165	12.03
2		1.737*×1.943*	100	9452K137 9452K138	9.05 9.05		9464K132 9464K133	5.44	25 25	9396K153 9396K154	11.12	50. 50.	9557K166 9557K167	12.02
3. 4.	1%* ×2½**	1.862"×2.068"		9452K138 9452K139	9.05		9464K133	5.61	10	9396K154 9396K155	5.87	50.	9557K167 9557K168	12.83
5	1 ¹⁵ /16"×2 ¹ /6" 2" ×2¥16"	1.925 × 2.131 1.987 × 2.193	100	9452K141 9452K142	9.37 9.37		9464K135 9464K136	5.95	10.	9396K156 9396K157	5.96	50. 40	9557K169 9557K3	9.88 8.50
7		2.050" × 2.256"	100	9452K143	9.51	10	9464K137	6.15	10	9396K158	6.23	25	9557K171	6.14
8 9.		2.112 × 2.318 2.175 × 2.381	50 50	9452K144 9452K145	7.38		9464K138 9464K139	6.18	10.	9396K159 9396K78	6.43	25.	9557K172 9557K173	6.14
0		2.175 × 2.381 2.237 × 2.443	. 50	9452K145 9452K146	7.54		9464K139 9464K151	6.20		9396K78 9396K161	6.52	40.	9557K173 9557K174	13.2
1		2.300" × 2.506".	. 50.	9452K147	7.54		9464K141. 9464K142	6.45		9396K79	6.72	25	9557K175	. 8.31 . 7.94
3		2.362 × 2.568 2.425 × 2.631	50 50	9452K148 9452K149	7.94 7.94	10	9464K142 9464K143	6.45 6.45	10	9396K162 9396K163	6.78 6.78	25 25	9557K74 9557K177	8.72
4	21/2 × 211/36 29/16 × 23/4	2.487*×2.693* 2.550*×2.756*	50 50	9452K151 9452K152	8.17 8.33	10 10	9464K144 9464K145	6.85	10.	9396K164 9396K165	6.91	35. 35.	9557K178 9557K179	13.13
6		2.612"×2.818"	. 50	9452K153	8.33	10	9464K146	7.44	10.	9396K166	7.33	35	9557K181 9557K182	. 14.00
17 18	211/16*×21/6* 23/4* ×215/16*	2.675 × 2.881 2.737 × 2.943		9452K154 9452K155	8.49 9.52	10 10	9464K147 9464K148	8.15	10	9396K167 9396K168	8.05	35. 30.	9557K182 9557K183	14.05
19	21%16"×3"	.2.800"×3.006"		9452K156	9.52	2.0	9464K149	-	3.0	9396K169	9.32		9557K184	8.82

3272

McMASTER-CARR

Figure 9.11.12: O- rings Source Data Sheet

PC Polycarbonate Honeycomb

Description:) Hereiter H	structure: The co common with ot	bonate honeycomb core exhibits a unique cell re has 3 orientations vs. the 2 orientations her cores, making its properties more uniform, ubular form and is inherently stable.
Features:		 Conductive gra Fire resistant Corrosion resistant Fungi resistant Sandwich skins Use temperatu Small cell sizes 	and electric insulator ides available stant s can be melted to core
Applications:		Wind tunnels — (Sandwich cores Radomes — Ante Skylights Sound absorbin	ennae
Availability:		Plascore polycar standard dimens	bonate honeycomb is available in the following ilons:
		Cell Sizes: Densities: Sheet length: Sheet width Sheet thickness: Tolerances:	$3/32^{\circ}$, $1/8^{\circ}$, $1/4^{\circ}$ (other cell sizes on request) 3 to 20 pcf 150° max 49° max 13° max. 120° min Length: $\pm 060^{\circ}$ Width: $\pm 060^{\circ}$ Thickness: $\pm 008^{\circ}$ Density: $\pm 10\%$
			ell sizes, shapes, dimensions, tolerances and serties can be provided.
	equipme of our kr of any su warranti purchase suitabilit The infor ment, pe	Int and processes is i nowledge. We do not w uch information, what es of fitness for a part er's responsibility to un y of our products for t rmation contained her	formation herein regarding our products, believed to be reliable and to the best anrent the accuracy and completeness her expressed or implied, including icular purpose. It is the user's or dertake sufficient testing to verify the heir own particular purpose. ein shall not be construed as induce- ndation to infringe upon any patent arties.
		PL	ASCORE

Figure 9.11.13: Honeycomb Flow Straightener Source Data Sheet

OMEGA's PGUF series liquid fillable utility gauges are designed for a wide range of applications on pumps, compressors, hydraulic systems, machine tools and petrochemical processing equipment.

For high shock and vibration applications the PGUF can be liquid filled in the field to dampen the gauge pointer movement. The PGUF Series liquid filled gauges come in ranges of (PSI/BAR) 0-30/2, 60/4, 100/7, 160/11, 300/20, 600/40 and 1000/70 (63 mm (2 1 /2 ") gauge is also available in 2000/140 and 3000/200). Rated accuracy is ± 2.5% of span.

Gauges feature a corrosion resistant 304 stainless steel case and ring, and a durable polycarbonate window. Phosphor bronze bourdon tubes with brass movement, socket and NPT connections are standard. PGUF gauges are available in 38 mm (1 1 /2 "), 50 mm (2") and 63 mm (2 1 /2 ") designs with center back or lower mount NPT connections.

SPECIFICATIONS

Ranges: From 30PSI/2BAR to 1000PSI/70BAR (2000PSI/140BAR and 3000PSI/200BAR ranges on 63 mm (2 1 /2 ") models only) Accuracy: ±2.5% full scale Bourdon Tube: Phosphor bronze Window: Polycarbonate Dial: Galvalume white background with blue and black markings Pointer: Galvalume black finish Movement: Brass

Figure 9.11.14: Pressure Gauge Source Data Sheet

PRESSURE SNUBBER - for dampening and filtering. The snubber has a porous metal disc available in three standard grades of porosity. Due to the large filter surface, the snubber has less tendency to clog than orifice type devices. The housing is 303SS and the filter disc is 316SS with a maximum PSI rating of 10,000 at 25°C. (PS-8 series 5000 PSI)

To Order (Spe	cify Model Nu	mber)		dd to Cart
Part Number	Availability	Price	Description	Qty.
PS-8D	In Stock	\$10.00	1/8" NPT pressure snubber for oils (>225 SSU viscosity)	0
PS-8E	In Stock	\$10.00	1/8" NPT pressure snubber for water and light oils (<225 SSU viscosity)	0
PS-8G	In Stock	\$10.00	1/8" NPT pressure snubber for air, steam and gases	0
PS-4D	In Stock	\$10.00	1/4" NPT pressure snubber for oils (>225 SSU viscosity)	0
PS-4E	In Stock	\$10.00	1/4" NPT pressure snubber for water and light oils (<225 SSU viscosity)	0
PS-4G	In Stock	\$10.00	1/4" NPT pressure snubber for air, steam and gases	0
PS-2D	In Stock	\$24.00	1/2" NPT pressure snubber for oils (>225 SSU viscosity)	0
PS-2E	In Stock	\$24.00	1/2" NPT pressure snubber for water and light oils (<225 SSU viscosity)	0
PS-2G	2 Weeks	\$24.00	1/2" NPT pressure snubber for air, steam and gases	0

Figure 9.11.15: Pressure Snubber Source Data Sheet

Pumps can run dry for up to one hour.
To reduce maintenance, bearings are kept cool with heat dissipation vent holes and a large flush groove.

increase pump efficiency, reduce horsepower and

energy usage

 Use in production processes such as filtering, spraying, washing, and etching.

Pumps are set up for hard-wiring; cord and plug are not included.

Specifications							
Max flow rate		40 GPM					
Max fluid temp)	176°F (80°C)					
Max system p	essure	36 psi					
Max head (ft)		52					
Duty cycle		Continuous					
Motor phase		1					
Run dry		up to one hour					
Wetted materi	als	glass-reinforced PP pump head, carbon bearing, alumina ceramic spindle, Viton [®] O-ring					
Dimensions		$20"L \times 6-1/3"W \times 10"H$					
Commention of	outlet	1" NPT(M)					
Connections	inlet	1" NPT(M)					
	type	TEFC					
	rpm	3500					
	VAC	115/208-230					

Figure 9.11.16: Pump Source Data Sheet

PVC Pipe Fittings

For information about selecting and measuring pipe and fittings, see pages 2-3. For information about plastic fittings and pipe, see page 61.

+ 00 + + 10 +	Please Read Berth measured size. To det shown at left. For unth For threaded fittings, i corresponding pipe size the chart is 1%, and	termin Ireade round ze. Fo	e pipe ed fittin up the r exam	size, fi gs, tak measi ple, if t	rst mea e the a uremer he thre	asure the ctual me t to the saded p	easure close pipe fitt	ide di ment st ID I	ameter and sel listed in	r (OD) c lect the n the cl	or insi corre hart b	de dia spon elow a	ameter ding pip and sel	(ID), as be size. ect the
Unthreaded Threaded	Unthreaded OD or ID		0.675*	0.840*	1.050*	1.315*	1.660*	1.90*	2.375*	2.875*	3.50*	4.50*	6.625*	8.625*
Unthreaded Intreaded	Threaded ID	1/2"	_	3/4*	1*	1%*	1%*	1%*	2%*	2%*	31/2*	4%*	_	_
	Pipe Size	1/4*	%°	1/2 ⁴	34*	1*	1%*	11/2*	2*	21/2*	3"	4*	6*	8"

Standard-Wall (Schedule 40) White PVC Pipe Fittings

0

NSF-61 certified for use with drinking (potable) water
 Offering corrosion resistance, strength, and rigidity, these standard-wall PVC fittings are the most common choice for plastic fittings in lowpressure plumbing applications. They meet ASTM D1784 and D2466.
 Connect fittings to pipe by cementing the pipe end (male) into the socket end (female) using a primer and cement (see page 66). The pipe
end is also known as a spigot. Connections: Unthreaded socket end (female), unthreaded pipe end (male), or threaded (NPT).

Unthreaded Socket End (Female) to Unthreaded Socket End (Female)

	3	0	B	\$	0	
Pipe Size	90° Elbows Each	45° Elbows Each	Tees Each	Crosses	Caps Each	Lg. Couplings Each
% ½ ¾ 1 1 ¾ 1 ½ 2 ½ 2 ½ 3 4	4880K108\$1.54 4880K21	4880K31\$0,51 4880K3278 4880K3394 4880K341.31 4880K351.64 4880K351.5,3 4880K37866 4880K37866 4880K37866 4880K311126,02 4880K111258,01	4880K10951.18 4880K4138 4880K4243 4880K4382 4880K441.28 4880K451.26 4880K451.26 4880K45978 4880K4817.69 4880K41237.43 4880K12286.84	4890K241 4880K242 4880K242 4880K243 4880K245 4880K245 4880K245 4880K246 4880K247 11.32 4880K249 20.56	4880K5150.28 4880K5232 4880K5351 4880K5572 4880K5578 4880K5594 4880K55328 4880K573.28 4880K58745 4880K14112.12 4880K14112.12	1%33* 4880K114 50.54 12%32* 4880K71 20 11%3* 4880K72 28 2%3* 4880K73 48 2%4* 4890K73 48 2%4* 4890K73 48 2%4* 4890K73 48 2%4* 4890K73 48 2%4* 4890K76 1.10 4%5* 4880K76 1.37 4%4* 4890K78 5.46 7%4* 4880K78 5.46 7%4* 4880K132 11.74 9%16* 4880K132 21.90
I	Pipe Size,	Reducing Te	Pipe Size,	1	~ ~	Unions Pipe
		%4"4880K97150. %4"4880K9721, 1*4880K973 1*4880K974 1*4880K9751, 1%2"4880K9752,	51 2**1½*22 45 2½**1¼*2½ 87 2½**2**2½ 94 3**2**3* 97 4**3**4	4880K981 7.42	000	Size Each Vr"_4880K301\$2.99 3/4"4880K303\$41 1"4880K303\$51 1/4"4880K305\$11.30 1/4"4880K305\$11.79 2"4880K306\$15.88

Unthreaded Pipe End (Male) to Unthreaded Socket End (Female)

-

			()					1	
Pipe Size, Male×Female	Each	Hex I Pipe Size Male × Fe		hings Each	Pipe Size, Male×Fem	ale	Each		ows
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K315	$\begin{array}{cccc} 2 & \times 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	4880K512 4880K513 4880K514 4880K514	1.50 1.50 2.42 2.42 2.42 2.42 2.42 2.42 3.58		4880K613 4880K614	\$3.58 3.58 3.58 7.22 8.01 8.01 13.40 18.21 43.15 43.15	Pipe Size 7/2*	C772 1.06 C773 1.83 C774 2.18 C775 2.42
Unthreaded Pipe	End (Male) to			inge Die	e End (A) -	Female NPT (I			
Pipe Si (A)×(B))	Each	Pipe Size, (A)×(B)		Pipe Each (A)×	Size, (B)	Each	Pipe Size, (A)×(B)	Each
1√4* × 1 * × 1 √4* × 1 √4* × 1 √4* × 1	\44880K199 \124880K201 \154880K202 \$44880K203 \154880K204 \$44880K204 \$44880K205 4880K207 \154880K207		1 V2 и 1	BOK209 BOK211 BOK212 BOK213 BOK214	1.45 21/2*) 1.45 21/2*) 1.94 21/2*) 1.94 21/2*) 1.94 3	1 ½	17 2.81 18 2.81 19 2.81 21 2.81 21 3.23	3 × 2 488 3 × 2 V2 488 4 × 2 488 4 × 2 V2 488 4 × 3 488	0K228\$3,23 0K229 3,23 0K224 3,23 0K231 7,22 0K225 7,22 0K233 7,22 0K23517,94
1.45. 8	1/2"488UK.207	1.45	(Contin	ued on	following p	age)			
	Vén	ing No	ever use PVC	fittings a	and pipe wi	th compresse	d air or g	as.	
62								McMAST	ER-CARR

Figure 9.11.17: PVC Fittings Source Data Sheet

					nation										e pages 2- see page 6	
Please Read Bel measured size. To d (ID), as shown at rig listed in the chart be or ID measures 13/16' is 1". For unthreade	etermi ht. Fo slow a , the n	ine pip r threa nd sele ext hig	e size aded i act th phest	, first fitting e corr OD or	measu s, rour espon ID in t	ure th nd up ding (he ch	e out the r pipe s art is	side dia neasur size. Fo 1¾°, a	ameter ement or exan nd the	r (ÖD) to th nple, corre	or ins e clos if the spone	side di sest Ol thread ding pi	ameter D or ID fed OD pe size			- 00
	10°	5/a*	364	1*	146*	1%*	176*	2%*	2%	31/2*	$4\%^{*}$	6%*	8%*	Threaded	Unthreaded	Unthreade
Threaded OD or ID		0.0344	0.045	1.057	1.315°	1.66*	1.90*	2.375*	2.875*	3.50*	4.50*	6.625*	8.625*			
Threaded OD or ID Unthreaded ID	0.54"	0.675°	0.84	1.05						9.9.9		0.040	0.010	Fitting	Fitting	Pipe

PVC Pine Fittings & Pine

Standard-Wall (Schedule 40) White PVC Pipe Fittings (Continued from previous page) Threaded End to Unthreaded Socket End (Female)

		~	and the second s	REDUCING	ADAPTERS
		Male × Female	Female		
Pipe	90° Elbows	Adapters	Adapters	Male NPT x	Socket End (Female) ×
Size	Each	Each	Each	Socket End (Female)	Male NPT
¥2*	4880K321\$0.36	4880K61\$0.28	4880K81 \$0.35	Pipe Size Each	Pipe Size Each
	4880K32242	4880K6231	4880K8243	1/2 H 3/8	3% × 1/2 4880K432 \$0.52
	4880K32378	4880K6354	4880K8351	% × 1/2 4880K433 48	1 × % 4880K434
	4880K324 1.31	4880K6466	4880K84	1" × %*	11/4*×1*
1 1/2*	4880K325 1.45	4880K6590	4880K8590	1%*×1*	11/2 × 11/2
2*	4880K326 3.75	4880K66 1.17	4880K86 1.21	11/2" × 11/4" 4880K439 2.38	2" × 11/2"
	4880K327 9.26	4880K163 3.47	4880K153 3.04	2 ×11/2	21/2 × 21 4880K443 4.23
	4880K32813.88	4880K67 5.08	4880K87 4.08		3" × 21/2"
	4880K32921.04	4880K68 6.47	4880K88 6.78		4" × 3"
6"		4880K16111.44	4880K15116.91		
8*		4880K16248.17	4880K15230.50		
			nan On Toos with	NPT Female Threaded Outlet	

Get a tee connection without removing any of your piping system. Simply apply primer and ce-ment, then snap over a pipe. When the cement is cured, drill a hole through the fitting and pipe.

Pipe Size, (A)×(B)×(C)	Each	Pipe Size, (A) × (B) × (C)	Each
¥4 × ¥4 × ¥4		1 × ½ × 1	

-

Threaded End to Threaded End 00

DOJA						
Unions	ni e ni		Hex Reducing Bu	ishings —		
Pipe Size Each	Pipe Size, Male×Female	Each	Pipe Size, Male × Female	Each	Pipe Size, Male×Female	Each
½*	%s × %	(342\$1.45 (343 1.45	1 × ¼	(349\$1.26 (351 1.87		K357\$2.26 K358 2.42
1*	½ × ½	344 1.45 34590	11/4"×1/4"	C352 1.87		K359 2.42
1 %* 4880K375 13.44	∛a* × %e*	(34690	11/2*× 1/2*	354 2.26	21/2* × 2*	K363 8.46
2*	³ /s × ½	(34790 (348 1.26	11/2 × 3/4	C355 2.26 C356 2.26	3* × 2*4880	K362 9.99

Selectable-Angle Standard-Wall (Schedule 40) White PVC Unthreaded Pipe Elbows

 NSF-61 certified for use with drinking (potable) water Maximum Temperature: 140° F Pipe: Use standard-wall (Schedule 40) white PVC unthreaded (see below)

Aways have the right elbow on hand to complete your job—you can cut these two-piece elbows to any angle you need. Furnished as a 90° elbow, they have cutting guides at 22½°, 33¼°, 45°, 56¼°, 67½°, and 78¾° angles; they also have a measuring template so you can cut a custom angle. After cutting, prime and cement the two pieces together (see page 66 for primer and cement). They're IAPMO listed and meet ASTM D2466. Connections: Socket end (female).

2e Each ...4747T11...\$5.35 ...4747T12...6.71 ...4747T13...18.88 ...4747T14...24.69

Standard-Wall (Schedule 40) White PVC Unthreaded Pipe

- · NSF-61 certified for use with NSF-B) certained for use with drinking (potable) water
 Maximum Temperature: 140° F
 Fitting: Use standard-wall (Schedule 40) white PVC (see page 62 and above)

PVC is the most popular plastic material for low-pressure plumbing applications, offering good corrosion resistance, strength, and rigidity. This pipe meets ASTM D1784 and D1785 and CSA B137.3-99. Connect pipe to fittings by cementing the pipe end (male) into the socket end (female) using a primer and cement (see page 66).

Pipe Size	ID	Max. psi @ 73° F	5-ft. Lengths Each	10-ft. Lengths Each	Pipe Size	ID	Max. psi Ø 73° F	5-ft. Lengths Each	10-ft. Lengths Eact
が… ギー・・・・ 1・・・・・・ 1が…	0.354* 0.483* 0.608* 0.810* 1.033* 1.364* r is dark (48925K21+53.56 48925K22+4.70 48925K911.88 48925K922.50 48925K933.68 48925K944.98	48925K41★55.46 48925K42★7.21 48925K112.50 48925K123.33 48925K134.90 48925K146.63	11/2 2 21/2 3 4 6 8			.48925K95\$5.86 .48925K967.85 .48925K9913.92 .48925K9714.41 .48925K9820.51 .48925K2535.73 .48925K2653.64	48925K15\$7.82 48925K1610.4 48925K1920.88 48925K1721.65 48925K1830.7 48925K4553.62 48925K4680.43
			Marring! Neve	use PVC fittings	and pip	e with a	compressed	air or gas.	
McN	ASTER	R-CARR							63

Figure 9.11.18: PVC Pipe Source Data Sheet

Marine Tanks

Bow Tanks

RV Replacement Tanks Fresh Water Tanks*click here* Black/Grey Water Tanks*click here*

Below Ground Tanks Septic (Waste) Tanks Cistern (Water) Tanks Above Ground Tanks Rectangular Plastic Tanks Vertical Storage & Water Tanks

 Low Profile Water Hauling Tanks OIL TANKS (Used Oil Only)

Horizontal & Elliptical Leg Tanks

 Cone Bottom Tanks & Stands (Biodiesel Production)

Double Wall Storage Tanks

Drum Spill Pallets & Containment

PRESSURE WASHER TANKS

FUEL TANKS (Be Prepared!!)

Containment Basins

Containment Travs

Pick Up Truck Tanks

(auto detail industry) Doorway Tanks (29" wide) Small Sprayer Tanks

Elliptical & Horizontal "Cradle" Tanks

Drainable Leg Tanks (Fully Draining!!!)

Fresh Water/Waste Tanks*click here*

Search Our Site►

Marine Tanks => Fresh Water/Waste Tanks*click here*

Click here for price!

1	
Part Number:	B268
Capacity:	5 gallons
Size:	12 1/4"L \times 12 1/4"W \times 8 1/4"H
USD Price:	65.00
USD Shipping:	**
** Oversized item. Shipping v Contact Us for a quote.	will be billed separately.

This is a 3/8th wall heavy duty marine grade tank. It can be used for many other applications outside the marine industry. This tank is of the highest quality in the business.

Add To Cart

It's a blank (no fittings or holes) tank and you can turn it anyway you choose to fit your needs. We will install any fittings you ask for. The process works with us sending you a blank drawing to fill out. Once you send it back to us we give you a call to go over it revising any corrections needed. Once you are comfortable enough to place an order, we get it rolling.

Fitting accessories include:

inspection plates, manways, hose barbs, female npt (threaded), slip, uniseal

Give us a call anytime with any questions 866 310 2556

Figure 9.11.19: Reservoir Source Data Sheet

FL-30000 Series flow meters use a pitot tube pickup and a hard-edged float design to provide a convenient and economical means of measuring water flow in a closed pipe system. A one-piece, impact-resistant machined acrylic body offers the strength and long service required in most commercial and industrial applications. Ten low flow rate models are ideal for applications where flowrates are typically low, such as in solar-heated pools and spas, electronics, and irrigation.

To Order (Spec	ify Model Number)		Add to Cart
Part Number /	Availability Price	Description	RoHS Qty.
FL-30001	In Stock \$70.00	5-40 GPM Rotometer 1" pipe size	

Figure 9.11.20: Flow Meter Source Data Sheet

CAD, Technical drawings and 3-D models available for items with this symbol.

Hex Head Cap Screws

For information about cap screw head and thread dimensions, see page 2982. For nuts, see pages 3025-3050.

 Nonmetallic
 All

 All screws are made to a Class 2A thread fit. Length is measured from under head or flange where applicable.

 Fully threaded screws are also known as tap bots.

 Myton &/6—This nonconductive material resists chemicals and solvents, except mineral acids. Temperature range is -40° to +185° F. Rockwell hardness is R105. Minimum tensile strength is 11.000 psi. Color is off-white.

 Interview
 Area realso known as tap bots.

 Myton &/6—This nonconductive material resists chemicals and solvents, except mineral acids. Temperature range is -40° to +185° F. Rockwell hardness is R105. Minimum tensile strength is 11.000 psi. Color is off-white.

 Interview
 Area realso known as tap bots.

 Myton &/6—This nonconductive material resists chemicals and solvents, except mineral acids. Temperature range is -40° to +185° F. Rockwell hardness is R105. Minimum tensile strength is 5,000 psi. Color is gray.

 Reinforced Polyurethane—Made of polyurethane reinforced with fiberglass for greater strength than nyion screws. Great in corrosive environments. Material is nonconductive and resistant to many chemicals. Temperature range is -40° to +150° F. Not rated for Rockwell hardness. Minimum tensile strength is 27.000 psi. Color is gray.

 Screws with flange provide a grip on the bearing surface when the screw is tightened. No loose washers needed.

 Kymar (PUD)—Possesses excellent corrosion and chemical resistance. Also known as PVDF [hoyvinytidene fluo-ride]. If's a tough and durable material. Withstands temperature sup to 285° F. Rockwell hardness is R109. Minimum tensile strength is 6.200 psi. Color is off-white.

Th

Pkg. Lg. Qty.	Per Pkg.	Pkg. Lg. Qty.	Per Pkg.	Pkg. Lg. Qty.	Per Pkg.	Lg. Q	kg. Ity. Per Pkg.
Nylon 6/6				Reinforced Poly	urethane (Con	t.)	-
14"-20 Head: W	a. 358; Ht. 367	- 16 (Cont.)		%"-16 Head: Wd		*//-11 (Cont.)
%*10091244 %*10091244 %*10091244 1*10091244 1%*10091244 1%*10091244 2*10091244 *5***18 Head: W %*5091244	A535 \$10.92 A537 11.08 A540 11.25 A542 11.42 A544 11.59 A546 11.75 A550 12.09 d. 167.14, 736.7 A579 \$9.97	1\4"5091244 1\4"2591244 2"2591244 3"2591244 3"2591244 \4"-13 Head: \1 \4"1091244 1"1091244	A628 6.67 A632 7.15 A634 7.79 A638 7.96 Wd. W: Ht. W.e A708 \$4.59 A710 4.72 A712 4.84	74-76 Feeder Work 74/6"-25-91346 2*25-91346 2*25-91346 2*91346 3*10-91346 3*10-91346 4%*-11 Head Work 11/4"5-91346 2*5-91346 3*5-91346 3*5-91346	A628\$14.66 A63214.91 A6347.40 A6367.74 PMP: Ht. 0.40 A640\$7.25 A6428.00 A6449.20 A6449.47	4"	Lon(1) 191345A65052.34 191345A6554.86 feact Wcf. Wcf. Ht. 0.465° 591345A660510.11 191345A6642.83 191345A6642.83 191345A6642.92 191345A6682.92 191345A66755.12
1* 5091244	A583 10.25	1 Va* 10 91244 1 Va* 10 91244		Reinforced Poly		Flange	0.112
1%*2591244 1%*2591244 2*2591244 2%*2591244 3*2591244 3**-16 Head: Wd %2*2591244 1*2591244	A587 5.68 A591 5.84 A593 6.00 A595 6.16 (. %%"; Ht. %%" A620 \$5,71	2"1091244 21/2"1091244 3"1091244 %"-11 Head: Wd 1/2"1091244 1"1091244 2"1091244	A720 5.34 A722 5.40 A724 6.38 	Head: Wd.	38": Ht. 0.280" pe Dia:: 0.560" A680 \$11.66 A682 \$13.09 A684 \$13.60 A686 \$13.66 A688 \$14.53	3% ² - 16 (0 1 √2 ² 10 2 √2 ² 10 3 ² 1 3 ² 10	091345A702\$8,55 091345A7039,37 591345A7045,08 591345A7055,38 Head: Wd. W'; Ht. 0.500*
PVC				11/2"2591345			091345A707 4. 8.42
%"-20 Head: Wd ∀z" 1095841 ¥z" 1095841 1"595841 1∀z"595841 2"595841			A628 4.55 A632 6.36 A636 2.42 Id. W ² : Ht. 1%e ²		%s"; Ht. 0.383" ge Dia.; 0.800" Å694♠\$14,92 A698♣ 14.88 A699♣ 7.53 A700♣ 7.75	1 Va*10 1 Va* 2* 2 Va* 3* 3 Va*	091345A714
-	A004 6.61	1*		Lg.	Each	Lg.	Each
1* 1095841 1%* 595841 1%* 595841 2* 595841	A585 4.39 A587 5.00 A589 6.36 d. %s": Ht. %s" A6234 \$6.82	2* 195841 3* 195841 4* 195841	A7202.50 A7243.83 A7269.00 d. w?: Ht. me? A800\$4.00 A8024.83 A8064.67	Kynar (PVDF) %r-20 Head: Wa %r*	A1104\$5.63 A11545.88 A12046.25 1.1%": Ht.1%" A1504\$6.88	₩ *-16 1* 1 ½* 2*	(Cont.) 98046A160 4. \$8,13 Head: Wd. %** Ht. %** 98046A215 4. \$7,75 98046A220 4. 8,75 98046A220 4. 13,13 98046A223 4. 15,88
Reinforced Poly	urethane			14-20 Head: W	1. 16.0° - 141. 16.0°	*/n/~18 ((Cont.)
 W^a-20 Head: With ¹/₂^a	A552+ \$11.48 A554+ 12.22 A556+ 12.98 A558 14.53	W-20 (Cont.) 1½*2591344 %#*-18 Head: Wo 1½*2591344 2*2591344	1. 32"; Ht. 0.205" A582\$13.62 A584 14.68	1/2"	A537 + \$3.84 A540 + 4.22 A542 + 4.47 1. 1/2"; Ht. 1%64" A581 + \$4.78	1 V2" 3%"-16 1" 1 V2" 2"	91297A585 4. \$6.56 Head: Wd. %re', HT. %ke' 91297A624 4. \$6.94 91297A628 4. 7.44 91297A632 4. 7.97 91297A634 8.69
Self-Seali	ng 18-8 S	tainless St	eel 🚓 🛛				

A silicone rubber 0-ring under the head forms a tight seal as these screws are fastened. The 0-ring has a temperature range of -160° to +50° F and withstands pressures up to 6000 psi. Screws can be reused without degrading the seal. To ensure sealing performance, the hole size dimensions must be adhered to. 18-8 stainless steel offers excellent corrosion resistance it may be mildly magnetic. Rockwell hardness is B70. Minimum tensile strength is 70,000 psi. Screws have a Class 24 hread ft. Length is measured from under head. UL recognized and CSA certified. Screws indicated with a \blacklozenge are always fully threaded (fully threaded screws are also known as tap bolts).

Lg.	Each	Lg.	Each L	g.	Each	Lg.	Each
1/2-20	Hole Size: 0.265*-0.269*	"/nº-18 Hole Size	x: 0.332°-0.336° 30	8-16	Hole Size: 0.395"-0.399"	1/2-13	Hole Size: 0.530°-0.534°
V2"		%4°	A581\$2.93	%**	92205A622\$3.24	1"	92205A722
3/4"			A583 2.93 1	*	92205A624 3.24	1 Va#	92205A725 4.48
1"	92205A542 1.85	1%"		W	92205A626 3.24	1 Vz"	92205A728 4.66
1%"		1½**		<u>Va</u> #	92205A629 3.38	2ª	92205A731 5.14
1 1/2"			A591 3.25 2'	*	92205A631 3.76	2 Vz*	92205A735 5.62
2°				<u>1/2</u> "		3"	92205A740 6.03
2 1/2"		3"	A598 3.84 3'		92205A640 4.59	3 Vz"	92205A745 6.41
🕈 Ahv	ays fully threaded.						
McM	ASTER-CARR						2991

McMASTER-CARR

Figure 9.11.21: Hex Cap Screws Source Data Sheet

PIPE PLUG PROBES

These high pressure thermocouple plug sensors are ideal for vessel applications, pressurized containers and applications requiring mounted NPT security. The 304SS sheath has a 6.4mm (1/4") dia. that extends 1/2" from the end of the 1/4 NPT pipe plug. Other length sheaths are available. The thermocouple-grade lead wires are stranded 20 AWG, fiberglass insulated, and stainless steel overbraided with stripped leads. Connectors are attached on request. Junctions are grounded or ungrounded for a pressure rating of up to 2500 psi. Exposed junctions are available for air or gas temperature measurements at ambient pressures. To tighten mounting threads, there is a hex section that is 22mm (.56") across flats that are 5.8mm (.23") wide.

To Order (Spec	ify Model Num	iber)		Add to Cart
Part Number TC-T-NPT-G-72	Availability In Stock		Description Type T Grounded Pipe Plug Probe	Qty.
TC-E-NPT-G-72	In Stock	\$34.00	Type E Grounded Pipe Plug Probe	0
TC-J-NPT-E-72	In Stock	\$34.00	Type J Exposed Tip Pipe Plug Probe	0
TC-K-NPT-E-72	In Stock	\$34.00	Type K Exposed Tip Pipe Plug Probe	0
TC-T-NPT-E-72	In Stock	\$34.00	Type T Exposed Tip Pipe Plug Probe	0
TC-E-NPT-E-72	In Stock	\$34.00	Type E Exposed Tip Pipe Plug Probe	0
TC-J-NPT-U-72	In Stock	\$39.00	Type J Ungrounded Pipe Plug Probe	0

Figure 9.11.22: Thermocouple Source Data Sheet

Search Catalog			+ Viev Cart	Ulay REO's	+ Express Ordering	
By Part Number 👻		⊁G 0	Shopping Ca		<u>0 Items</u>	I Shippin I Tax
• All Categories C Ther Gun, Temperature Control Un	mal Inserter Kit - Inclu iit, & Adapters	ides	Request for C	Quote	<u>0 ltems</u>	l Terms
All Categories > Installatio Control Unit, & Adapters > It		> Thermal	Inserter > The	rmal Inserter Kit	- Includes Gun. Tei	nperature
Request Information	Add to Cart	Request	Ouote			
-	8,					
Jarger image	8					

Figure 9.11.23: Thermal Insert Kit Source Data Sheet

SEARCH for		within All c	of VWR.com	GO	Advanced Se	arch MSD	S Cer	tificate of Analysis
lome	Prod	ucts Services	Programs	Requ	est a Catalog	i Abou	t Us	Contact Us
CHOOSE CATALOG								YOU MIGHT ALSO NEED
General Catalog Chemical Catalog Life Science Catalog Production Supplies Catalog Furniture Catalog		Chlorlde, USP le, 97.0–100.5%		Biocl	ems in Proc hemicals, G			Arctic* Protective Eyewear, MSA MSA
VWR Collection Catalog Safety Catalog Request a Catalog	ZnCl ₂	chloride 646-85-7						21
WR PROGRAMS BioScience Research Calibration & Metrology Services		16.28 Index: 13.10185 ade, 97.0–100.5%.						Uvex Bandido* Safety Eyewear, Bacou-Dalloz Bacou Dalloz
<u>Chemicals</u> <u>Chromatography</u> <u>Furniture</u> Healthcare/Clinical	Granula	ar.		ADD		V SHOPPING BA	SKET	Uvex Astrospec 3000
Lab Animal Science	Size	Packaging	VWR Catalog #	Info	Unit	Price	Qty	Safety Eyewear, Bacou
Leasing Program Life Science Site Services		Amber Glass Bottle STAKMOR*	MK877204 MSDS) MK877220 MSDS)	0	Each (500 G) Each (12 KG)		0	Dalloz* Bacou Dalloz
Lab Set Up Resource Center Oligo Configurator Production Supplies Safety University	O Ple custon are log	Poly Drum ase verify that you he ners with an establish ged in and believe yo nal help at 1-888-32	ed account and the ou should have acce	proper ess to ti	documentation his item, please	on file. If y	for	

Copyright@ 2006 VWR International. All Rights Reserved

Figure 9.11.24: Zinc Chloride Source Data Sheet

9.12.	Test Bed Material Selection Spreadsheets
-------	---

	SPECIFIC	ATIONS	5			USPC	IPS	KMAC	ENG.	NFORM	ATION (data from K	MAC)
Туре	Color			Thickness	qty	0010	Price	Kinec	Mod of Elast. Tens. (PSI)	Mod of Elast. Flex. (PSI)	Tens. Str. (PSI)	H2O Abs. 24hr. (%)	React
Acrylic	clear	12	12	1/4	1	\$4.64	\$5.10	\$48.56	406000	11700	7830		Α
Acrylic	clear	24	24	1 1/4	1			\$271.40					Α
Acrylic	clear	48	96	2	1			\$1,972.00					A
Acrylic	clear	12	12	4	2			\$757.50					A
HD Polyethylene	white	12	12	1/4	1		\$4.25	\$9.31		207200	4050		A
HD Polyethylene	white	24	24	1 1/4	1		\$99.00	\$158.40					A
HD Polyethylene	white	24	24	2	1		\$197.00	\$284.33					A
HD Polyethylene	white	24	48	1/4	1	\$25.76							A
HD Polyethylene	white	48	96	4	1			\$5,231.52					A
UHMW (PE)	white	12	12	1/4	1		\$5.57	\$15.31	155900	107900	3250	0	
UHMW (PE)	white	24	24	1 1/4	1		\$111.32	\$160.39					A
UHMW (PE)	white	24	24	2	1		\$178.08	\$304.27					A
UHMW (PE)	white	12	12	6	2	00140		\$311.78					A
	white	24	48	1/4	1	\$64.13							A
	white	24	48	1 1/4	1	\$331.63							A
UHMW (PE) PVC	white	24 12	48 12	2	1	\$524.37	£7.00	£13.00	410000	400000	7300		A B
PVC PVC	grey	24	24	1/4	1		\$7.33 \$112.24	\$13.68 \$238.86	410000	420000	/ 300		B
PVC PVC	grey	24	24	2	1		\$112.24	\$230.00					B
PVC PVC	grey grey	24	48	 1/4	1	\$58.16	4202.30	φυ10.72					B
PVC	grey	24	48	1/4	1	\$438.54							B
PVC	grey	24	48	2	1	\$766.33							B
	opaic grey	12	12	1/4	1	¢100.00		\$44.74	430000	410000	8200	0.04	AVB
	opaic grey	24	48	1 1/4	1			\$1,454.61	400000	410000	0200	0.04	A/B
CPVC	opaic grey	24	48	2	1			\$2,038.90					A/B
CPVC	grey	24	48	1/4	1	\$221.63		\$2,000.00					A/B
Acetal Delrin	- J	12	12	1/4	1	\$21.15	\$19.59	\$20.50	403205	382899	9572	0.65	C
Acetal Delrin		24	24	1 1/4	1		\$419.64	\$439.72					Ċ
Acetal Delrin		24	24	2	1		\$419.64	\$685.92					C
Acetal Delrin		12	12	4	2		\$661.04	\$511.48					С
Acetal Delrin		24	48	1 1/4	1	\$862.50	\$371.12						С
Acetal Delrin		24	48	2	1	\$1,343.29							С
ABS	natural	12	12	1/4	1		\$5.83	\$17.81	302000	314000	5800		Α
ABS	natural	24	24	1 1/4	1		\$182.40	\$245.48					A
ABS	natural	24	24	2	1		\$289.07	\$376.38					A
ABS	natural	12	24	4	1			\$841.70					A
Teflon		12	12	1/4	1	\$46.76	\$35.60	\$75.74	72000	80000	3900	< 0.01	A
Teflon		24	24	1 1/4	1		\$711.92	\$911.20					A
Teflon		24	24	2	1		\$1,139.04						A
Polypropylene	clear tint	12	12	1/4	1		5.46 x 2	\$9.54	152192	183860	3466	slight	A
Polypropylene	white	24	48	1/4	1	\$24.39							A
Polypropylene	clear tint	24	48	1 1/4	1		\$143.36	\$235.01					A
Polypropylene	clear tint	24	48	2	1		\$297.04	\$463.75					A
Polypropylene	clear tint	48	120	4	1			\$5,400.00					A
Polycarbonate	tinted bronze/grey	12	12	1/4	1	\$9.45	\$7.63	\$15.86	345000	345000	9000	0.15	A
Polycarbonate	black	24	24	1 1/4	1		\$715.98	\$827.23					A
Polycarbonate	black	24	24	2	1		ູ ຈ າ,125.32	\$1,026.00					A
Polycarbonate	black	12	24	4	1	#40 FO	#00.00	\$1,700.46	400000	440000	10400	4.0	A
Nylon Nylon	white	12	12	1/4	1	\$19.56	\$23.06	\$21.70	400000	410000	12400	1.2	A
Nylon Nylon	white white	24 24	24 24		1		\$322.66 \$522.42	\$230.42 \$354.07					A
Nylon Nylon	white	12	24	2 4	1		#DZZ.42	\$354.07 \$340.40					A
Nylon	white	24	48	4 1 1/4	1	\$643.75		ψυ40.40					A
Nylon	white	24	40	2	1	\$1,079.16							A
Nylon	white	12	12		2	\$251.66							Â
		12		-	-	μ φεστ.00			1	1			
	Reactivity Key (with	th Zinc (Chloride)			1				neet Size			1
A -			ellent			1			Qty	L	w	Т	1
B-	Good - Minor Effec			or discolors	ation	1		Sides	2	13.4	6.9	1.25	1
C-	Fair - Moderate Eff					1		Sides -W	2	13.4	6.9	2	1
-	use. Softening, lo:							Cover	2			0.25	1
D -	Severe Effect - not					1		Endcaps	2				
_				,									
	Ve	ndor Co	Ides										
USPC -	United States Plas												
IPS -	Industrial Plastic S												
KMAC -	K-mac Plastics (ty												

					Price by Vendor						
Material	L	W	T	QTY	USPC	IPS	KMAC				
Acrylic	12	12	1/4	1	\$4.64	\$5.10	\$48.58				
	24	24	1 1/4	1			\$271.40				
	48	96	2	1			\$1,972.00				
	12	12	4	2			\$757.50				
HD Polyethylene	12	12	1/4	1		\$4.25	\$9.31				
	24	24	1 1/4	1		\$99.00	\$158.40				
	24	24	2	1		\$197.00	\$284.33				
	24	48	1/4	1	\$25.76						
	48	96	4	1			\$5,231.52				
UHMW (PE)	12	12	1/4	1		\$5.57	\$15.31				
	24	24	1 1/4	1		\$111.32	\$160.39				
	24	24	2	1		\$178.08	\$304.27				
	12	12	6	2			\$311.78				
	24	48	1/4	1	\$64.13						
	24	48	1 1/4	1	\$331.63						
	24	48	2	1	\$524.37						
PVC	12	12	1/4	1	402-1.01	\$7.33	\$13.68				
	24	24	1 1/4	1		\$112.24	\$238.86				
	24	24	2	1		\$232.36	\$316.72				
	24	48	1/4	1	\$58.16	\$ZJZ.JD	φ310.7z				
	24	40	1 1/4	1	\$438.54						
	24	40	2								
CPVC	12			1	\$766.33						
CPVC		12	1/4				\$44.74				
	24	48	1 1/4	1			\$1,454.61				
	24	48	2	1			\$2,038.90				
	24	48	1/4	1	\$221.63						
Acetal Delrin	12	12	1/4	1	\$21.15	\$19.59	\$20.50				
	24	24	1 1/4	1		\$419.64	\$439.72				
	24	24	2	1		\$661.04	\$685.92				
	12	12	4	2		\$371.12	\$511.48				
	24	48	1 1/4	1	\$862.50						
	24	48	2	1	\$1,343.29						
ABS	12	12	1/4	1		\$5.83	\$17.81				
	24	24	1 1/4	1		\$182.40	\$245.48				
	24	24	2	1		\$289.07	\$376.38				
	12	24	4	1			\$841.70				
Teflon	12	12	1/4	1	\$46.76	\$35.60	\$75.74				
	24	24	1 1/4	1	-	\$711.92	\$911.20				
	24	24	2	1		\$1,139.04	\$1,448,42				
Polypropylene	12	12	1/4	1		\$5.46	\$9.54				
, eilbiobliene	24	48	1/4	1	\$24.39	40.10	+0.0				
	24	48	1 1/4	1	\$24.00	\$143.36	\$235.01				
	24	48	2	1		\$297.04	\$463.75				
	48	120	4	1		ψ2.57.04	\$5,400.00				
Polycarbonate	12	120	1/4	1	\$9.45	\$7.63	400.00 \$15.86				
Polycarbonate	24	24	1 1/4	1	\$ 9.40	\$715.98	\$827.23				
	24	24	2	1		\$1,125.32	\$1,026.00				
NI 1	12	24	4	1	# · O F -	000.00	\$1,700.46				
Nylon	12	12	1/4	1	\$19.56	\$23.06	\$21.70				
	24	24	1 1/4	1		\$322.66	\$230.42				
	24	24	2	1		\$522.42	\$354.07				
	12	24	4	1			\$340.40				
	24	48	1 1/4	1	\$643.75						
	24	48	2	1	\$1,079.16						

Price per material	sides	endcaps	w/ max h
Acylic	\$2,248.50	\$1,515.00	4
HD Polyethylene	\$300.25	\$5,231.52	4
UHMW (PE)	\$294.97	\$623.56	6
PVC	\$351.93	-	-
CPVC	\$3,538.25	-	-
Acetal Delrin	\$1,100.27	\$1,022.96	4
ABS	\$477.30	\$841.70	4
Teflon	\$2,406.38	-	-
Polypropylene	\$445.86	\$5,400.00	4
Polycarbonate	\$1,749.61	-	-
Nylon	\$604.05	\$340.40	4

9.13. Flow Channel Cross Section Maximum and Minimum Dimensions

The maximum and minimum dimensions of the flow channel are based on the maximum pixel dimension of the imaging equipment, and the maximum and minimum number of bead diameters for minimizing edge effects. For instance, if the pixel dimensions of the imaging equipment are P_1 and P_w , the bead resolution is R, and the maximum and minimum number of bead diameters for negligible edge effects are N_{max} and N_{min} , with a bead diameter of D_B then a range of dimensions for the flow channel can be determined by,

$$MAX = D_B \left[\frac{MAX(P_l, P_w)}{R} + 2N_{\max} \right], \quad (Eqn. 9.13.1)$$

and,

$$MIN = D_B \left[\frac{MAX(P_l, P_w)}{R} + 2N_{\min} \right]. \quad (Eqn. 9.13.2)$$

The following table is a summary of above calculations.

|--|

	Flow Channel Final Calculations													
Camera Dimensions		Resolution (Pixels/Bead	0	Effects ons (Bead	Bead Diameter (mm)	Flow Channel Leng								
(Pix	els)	Diameter)		nters)		(m)								
Length	1300	160	MIN	3.5	6	MIN	0.16875							
Width	1040	100	MAX	10	0	MAX	0.09075							

The final cross section dimensions of the flow channel are 0.139-m by 0.139-m, placing the number bead diameters for minimizing edge effects at approximately 7.5.

10. APPENDIX SECTION 2: BILL OF MATERIALS

10.1. Test Bed Price Estimation

	(in)								
Purchased Parts & Materials	Material	Qty	L	W	Т	Cost per	(increment)	Min Buy	Total
		<u> </u>	ion Mo	terial Co					
Test Section Sides	ABS	Sect					1		\$477.30
Test Section Ends	-	1	12.00	cost ord 24.00	er 6.00	\$548.47			+
	UHMW (PE) PVC		12.00	24.00	6.00	+			\$548.47
Flanged half coupling pipe fitting	Stainless Steel	2				\$6.39 \$4.21			\$12.78 \$33.68
Self-Sealing Hex Cap Screws		8				+			+
Viewing Window	Borosilicate Glass	2				\$190.00		2	\$380.00
Intro-serts - Regular	Stainless Steel	216				\$2.22			\$480.17
Intro-serts - Short	Stainless Steel	36				\$2.22			\$79.92
Thermal Inserter Kit		1				\$299.00			\$299.00
Gasket Sheeting	Neoprene	2	24.00	24.00	0.06	4	per ft.		\$13.50
O-Rings	Viton Rubber	252					per pack of	50	\$24.90
Btn Sckt Hd Cap Screw(M3X0.5)	Stainless Steel	252					per pack of	50	\$40.25
Honeycomb flow staightener	Polycarbonate	2				\$1.00			\$2.00
								Total:	\$2,391.97
							w/out inserts	Total:	\$1,532.88
		w Lo	op Mate	erial Cos	sts				
Diaphram Valve	PVC	1				\$116.00			\$116.00
Centerfugal Pump	PPE**	1				\$692.00	ea.		\$692.00
PVC Pipe	PVC	2				\$4.85	per 10 ft.		\$9.70
Fittings	PVC	6				\$0.62			\$3.72
Storage Tank	Polyethylene	1				\$65.00			\$65.00
								Total:	\$886.42
	Meas	urem	ent Equ	uipment	Cost				
Rotometer	Polysulfone	1				\$70.00			\$70.00
Pressure Transducer	Plastic/Silicone	1				\$36.00			\$36.00
Thermocouple (pipe plug probe)	Stainless Steel	1				\$34.00			\$34.00
Pressure Gauge	Stainless Steel	2				\$16.25			\$32.50
Pressure Snubber	Stainless Steel	2				\$10.00			\$20.00
								Total:	\$192.50
		Medi	a & Flu	id Cost					,
Glass Beads	Borosilicate Glass	6				\$138.31	per container	1800	\$829.86
		-							
ZnCl2 Powder	ZnCl2	1				\$2,455.50	per	50kg.	\$2,455.50

Grand Total: \$6,756.25 w/out media & fluid: \$3,470.89

Grand Total w/out inserts: \$5,897.16 w/out media & fluid: \$2,611.80

.2.				С	'0	n	ŋ	0	n	e	n	t S	S	DL	ır	c	e	a	n	d	L	<i>ر</i> ا	a	d	Ti
Lead Time (weeks)		-	4	5-6	2	m	-	-	-	-	-	~	-	-	-	-	-	-	4-5	-	-	~	m	e	
Total Price	\$692.00	\$116.00	\$65.00	\$380.00	\$477.30	\$548.70	\$480.17	\$79.92	\$299.00	\$12.78	\$33.68	\$13.50	\$24.90	\$40.25	02.6\$	\$3.72	\$32.50	\$20.00	\$2.00	\$70.00	\$36.00	\$34.00	\$829.86	\$2,455.50	Fotal: \$6,756.48
Per Oty.	ea.	ea.	ea.	ea.		ea.	ea.	ea.	ea.	ea.	ea.	Ĥ.	5	8	10f	ea.	ea.	ea.	ea.	ea.	ea.	ea.	ea.	ea.	Total:
Oty. Unit Price	\$692.00 ea.	\$116.00 ea.	\$65.00 ea.	\$190.00 ea.	\$477.30	\$548.70 ea.	\$2.22	\$2.22 ea.	\$299.00 ea.	\$6.39 ea.	\$4.21	\$6.75 ft.	\$4.98	\$8.05	\$4.85	\$0.62 ea.	\$16.25 ea.	\$10.00 ea.	\$1.00 ea.	\$70.00 ea.	\$36.00 ea.	\$34.00 ea.	\$138.31	\$2,455.50 ea.	
Qty.	1	-	-	2	req'd	-	216	ю	-	2	8	2	252	252	2	9	2	2	2	-	-	-	9	1	
Description	High Efficiency Prolypropylene Pump, 40 GPM, 1/2hp,115/208-230 VAC	Type 314 Manual True Union Diaphragm Valve - PVC	5 gallon, 12.25"L x 12.25"W x 8.25"H 3/8"thick polyethylene tank	Schott Borofloat Square 120mm+-0.25mm square; 20mm thick; rnd. Corners	various sheet sizes	6.00" x 12" x 24"- Standard Natural, UHMWPE Sheet	Ultrasonic stainless steel inserts - metric threads M3.0 x 0.5	Ultrasonic stainless steel inserts - metric threads M3.0 x 0.5	Thermal Inserter Kit - includes gun, temp. control unit, and adapters	flanged half coupling pipe fitting	18-8 Stainless Steel, self sealing hex cap screws	Neoprene rubber sheet	Viton rubber o-ring	18-8 Stainless Steel Button Socket Head Cap Screw M3.0x0.5	1" sch 40 white solid PVC unthreaded	1" sch 40 white PVC Socket-weld x Socket-weld female 90° Elbow	PGUF-20L-60PSI 304 Stainless Steel Case, 0-60 psi, 2" dial	1/4" NPT pressure snubber for water and light oils (PC Polycarbonate honeycomb	5-40 GPM, 316SS, FLOAT 1" FNPT	Differential model with a range of 0 to 100 psig	Type T grounded pipe plug probe	Beads, solid glass, 6mm CS 1LB	50 Kg Poly Drum of ZnCL2 powder	
Product Code	C-72009-00	161-314-680	B268	ing.#06112904		KS-8505	3005H6-8SS	3005HR6-7SS	Z-T11000	4881K213	92205A722	8625K62	9464K514	92095A187	48925K13	4880K23	PGUF-20L-60PS	PS-4E		FL30002	PX26-100GV	TC-J-NPT-G-72	13500 6	MK877225	
Vendor	Cole Parmer	George Fisher	Plastic-Mart	Specialty Glass Products	Industrial Plastic Supply	K-MAC Plastics	Yardley Products Corp.	Yardley Products Corp.	Yardley Products Corp.	McMaster Carr	McMaster Carr	McMaster Carr	McMaster Carr	McMaster Carr	McMaster Carr	McMaster Carr	Omega	Omega	Plascore	Omega	Omega	Omega	WWR	WWR	
ltem	Pump	Diaphragm Valve	Storage Tank	Viewing Glass	ABS Sheet	UHMW Block	Intro-serts - Regular	Intro-serts - Short	Thermal Inserter Kit	Flanged half coupling pipe fitting	Self-Sealing Hex Cap Screws	Gasket Sheeting	O-Rings	Bth Sckt Hd Cap Screw(M3X0.5)	PVC Pipe	Fittings	e Gauge	Pressure Snubber	Honeycomb flow staightener	Rotometer	Pressure Transducer	Thermocouple (pipe plug probe)	Kimax Borosilicate Glass Beads	ZnCl2 Powder	
ltem ⊭	-	2	m	4	ъ	ما	7	ω	م	₽	11	12	θ	14	15	16	17	8	19	8	21	8	8	24	

11.APPENDIX SECTION 3: PART DRAWINGS

11.1. Drawing Package

Figure 11.1: Assembly Drawing

Figure 11.2.1: Diffuser Drawing

Figure 11.2.3: Diffuser Drawing

Figure 11.2.5: Diffuser Drawing

Figure 11.3.1: Window Wall Drawing

Figure 11.3.2: Window Wall Drawing

Figure 11.3.3: Window Wall Drawing

Figure 11.3.4: Window Wall Drawing

Figure 11.4: Solid Wall 1 Drawing

Figure 11.5: Flow Straightener Drawing

Figure 11.6: Viewing Window Drawing

Figure 11.7.1: Window Frame Drawing

Figure 11.7.2 Window Frame Drawing

Figure 11.9: Inner Window Gasket Drawing

Figure 11.11: Wall Gasket Drawing

Figure 11.12.1: Solid Wall 1 Drawing

Figure 11.12.2: Solid Wall 1 Drawing

Figure 11.12.3: Solid Wall 1 Drawing

Figure 11.12.4: Solid Wall 1 Drawing

11.2. Modified Fabrication Plan Drawing

Figure 11.2.1: 2-D Flow Cell Modification Drawing

12. BIBLIOGRAPHY

[1] Dybbs, A., Edwards, R., A new look at porous media fluid mechanics – Darcy to Turbulent, (1984)

[2] Han, N., Bhakta, J., Carbonell, R., Longitudinal and lateral dispersion in packed beds: effect of column length and particle size distribution, AIChE Journal, 31,2 (1995)

[3] Seguin, D., Montillet, A., Comiti, J., Experimental characterization of flow regimes in various porous media – I: Limit of laminar flow regime. Chem. Eng. Sci., 53.21 (1998)

[4] Seguin, D., Montillet, A., Comiti, J., and Huet, F., Experimental characterization of flow regimes in various porous media-II: Transitions to turbulent regime, Chem. Eng. Sci., 53,22 (1998)

[5] Stöhr, M., Roth, K., and Jähne, B., Measurement of 3D pore-scale flow in index-matched porous media, *Experiments in Fluid*, 35,159 (2003)

[6] Suekane T., Yokouchi Y., & Hirai S., Inertial flow structures in a simple packed bed of spheres. Fluid Mechanics and Transport Phenomena, 49,1, (2003) pp.10-17.

[7] Siagam, A., Knieke, C., and Gunther, B., Measurement of flows in randomly packed beds using the Particle Image

Velocimetry, 13th Int. Symp on Appl. Laser Techniques to Fluid Mechanics, Lisbon, Portugal.

[8] Dow Corning, 2006, "Dow Corning Silicones," manufacturer website, http://www.dowcorning.com/

[9] Clearco, 2006, "Silicone Fluids - Clearco Products," manufacturer website, http://www.clearcoproducts.com/

[10] Wood, B., Borosilicate Bead Meeting, Merryfield 202, Department of Environmental Engineering Oregon State University, Corvallis OR, October 27, 2006

[11] Science Lab.com - Chemicals and Laboratory Equipment, 2006 "Zinc Chloride, Granular, Reagent, ACS - Z * 7646-85-7," distributor website, http://www.sciencelab.com/page/S/PVAR/10433/SLZ1225?gclid=CNTH-dDcwogCFSdJYwodD0yjLA

[12] Old Bridge Chemicals Inc., 2006, "MSDS – Zinc Chloride," manufacturer/distributor website,

http://www.oldbridgechem.com/msdszncl2.html

[13] Rubber Gaskets, 2006, "Rubber Gaskets," manufacturer website, http://www.rubber-gaskets.com/
[14] Wikipedia, 2006, "Polydimethylsiloxane," Wikipedia, http://en.wikipedia.org/wiki/Polydimethylsiloxane

[15] Liburdy, J.A., Project Details Meeting, Conference Room 314, Department of Mechanical Engineering Oregon State University, Corvallis, OR, October 16, 2006

[16] Pence, D, Diffuser Converstaion, Room 316, Department of Mechanical Engineering Oregon State University, Corvallis, OR, October 30, 2006

[17] Liburdy, J.A., Project Details Meeting, Conference Room 314, Department of Mechanical Engineering Oregon State University, Corvallis, OR, November 9, 2006

[18] Liburdy, J.A., Project Introduction Meeting, Conference Room 314, Department of Mechanical Engineering Oregon State University, Corvallis, OR, October 2, 2006

[19] Iplex, 2006, "Iplex Pipelines – Chemical Resistance Chart," manufacturer website,

http://www.iplex.com.au/iplex/ChemResistance/details.asp?chem=Zinc+%2D+Chloride

[20] Liburdy, J.A., Project Details Meeting, Conference Room 314, Department of Mechanical Engineering Oregon State

University, Corvallis, OR, October 9, 2006

[21] Cole-Parmer, 2006, "Cole-Parmer Technical Library," manufacturer website,

http://www.coleparmer.com/techinfo/techinfo.asp?htmlfile=SelectingFlowmeter2.htm&ID=668

[22] Liburdy, J.A., Formulas Email, Department of Mechanical Engineering Oregon State University, Corvallis, OR, October 10, 2006

[23] Heald, C.C., 1998, Cameron Hydraulic Dynamics, Thurd Printing, Liberty Corner, NJ

[24] White, F.M., 2003, Fluid Mechanics, McGraw-Hill, New York, NY

[25] Wardell, R., 1996, "How to do Stained Glass," informational website,

http://www.thestorefinder.com/glass/library/wardell.html

[26] Kennedy, T.C., Glass Formula Discussion, Room, 412, Department of Mechanical Engineering Oregon State University, Corvallis, OR, November 27, 2006

[27] Fischer Process Industries, 2006, "Engineering Data, Chemical Compatibility Guide" manufacturers website,

http://www.fpv.com/PDF/chem resist chart.PDF

[28] Wood, B., Test Bed Meeting, Merryfield Lab, Department of Environmental Engineering Oregon State University, Corvallis, OR, November 9, 2006

[29] Farr, J.R., M.H. Jawad, 2006, Guidebook for the Design of ASME Section VIII Pressure Vessels Third Edition, ASME Press, New York, NY

[30] Mandatory Appendix 2 Rules for Bolted Flange Connections with Ring Type Gaskets, 2006, ASME Press, New York, NY

[31] Liburdy, J.A., Weekly Project Meeting, Department of Mechanical Engineering Oregon State University, Corvallis, OR, November 13, 2006

[32] Kreitner, R., Kinicki, A., 2005, Organizational Behavior, McGraw-Hill, Irwin

13.ADDITIONAL SOURCES

The following are additional sources not directly used in this report but that are useful for a deeper understanding of the topics presented in this report.

Yevsyev, A. R. V. E. Nakoryakov, and N. N. Ramonov, Experimental Investigation of a Turbulent Filtrational Flow, *Int. J. Multiphase Flow*, 17,103 (1991).

Stephenson, J. L., and W. E. Stewart, Optical Measurement of Porosity and Fluid Motion in Packed Beds, *Chem. Eng. Sci.*, 41, pg 2616 (1986).

Saleh, S., J. F. Thovert, and P.M. Adler, Flow along Porous Media by Particle Image Velocimetry, AIChE J., 39, pg1765 (1993).

Rashidi, M., A. Tompson, T. Kulp, and L. Peurrung, 3-D Microscopic Measurement and Analysis of Chemical Flow and Transport in Porous Media, J. Fluid Eng.-Tans. Amer. Soc. Mech. Eng., 118, 470 (1996).

Rashidi, M., A. Tompson, T. Kulp, and L. Peurrung, Experimental analysis of pore-scale flow and transport in porous media, *Advances in Water Resources*, **19**,163 (1996)

Moroni, M., and J. H. Cushman, Statistical Mechanics with Three Dimensional Particle Tracking Velocimetry Experiments in the Study of Anomalous Dispersion. II. Experiments, *Phys. Fluid*, **13**, 81 (2001).

Moroni, M., and J. H. Cushman, A. Cenedese, A 3D-PTV two-projection study of pre-asymptotic dispersion in porous media which are heterogeneous on the bench scale, *Inter. J. Eng. Sci.*, **41**,337 (2003)

Montemagno, C. D., and W. G. Gray, Photo luminescent Volumetric Imaging: A Technique for the Exploration of Multiphase Flow and Transport in Porous Media, *Geophys. Res. Lett.*, **22**, 425 (1995).

Shattuck, M., R. Behringer, J. Geordiadis, and G. A. Johnson, Magnetic Resonance Imaging of Interstitial Velocity Distribution in Porous Media, *Proc. Of ASME/FED on Experimental Techniques in Multiphase Flows*, **125**, 39 (1991)

Shattuck, M. D., R. P. Behringer, G. A. Johnson, and J. G. Geordiadis, Onset and Stability of Convection in Porous Media: Visualization by Magnetic Resonance Imaging, *Phys. Rev. Lett.*, **75**, 1934 (1995)

Kutsovsky, Y. E., L. E. Scriven, H.T. Davis, and B. E. Hammer, NMR Imaging of Velocity Profiles and Velocity Distributions in Bead Packs, *Phys. Fluids*, 8, 863 (1996)

Seymore, J. D., and P.T. Callaghan, Generalized Approach to NMR Analysis of Flow and Dispersion in porous Media, *ALChE J.*, 43, 2096 (1997).

Sederman, A.J. M. L. Johns, A. S. Bramley, P. Alexander, and L. F. Gladden, Magnetic Resonance Imaging of Liquid Flow and Pore Structure within Packed Beds, *Chem. Eng. Sci.*, 53, 2117 (1998)

Sederman, A.J. M. L. Johns, P. Alexander, and L. F. Gladden, Structure-Flow correlations in Packed Beds, *Chem. Eng. Sci.*, 53, 2117 (1998)

Manz, B., L. F. Gladden, and P. B. Warren, Flow and Dispersion in Porous Media: Lattice-Boltzmann and NMR Studies, *AIChE J.*, 45, 1845 (1999)

Irwin, N.C., R. A. Greenkorn, S. A. Altobelli, and J. H. Cushman, Examination of Stochastic Dispersion Theory by MRI in Aperiodic Porous Media, *AIChE J.*, 46, 2345 (2000)

Baumann, T., R. Petsch, and R. Niessner, Direct 3-D Measurement of the Flow Velocity in Porous Media Using Magnetic Resonance Tomography, *Environ. Sci. Technol.*, 34, 4242 (2000)

Gunjal, P.R., V. V. Ranage, R.V. Chaudhari, Computational Study of a Single Phase Flow in Packed Beds of Spheres, *Fluid Mechanics and Transport Phenomena*, **51**, 2 (2005)

Journal Publishing Help – Writing a Technical Paper or Brief, 2006, ASME Journal Submission Website, http://journaltool.asme.org/Help/AuthorHelp/WebHelp/Guidelines/Writing a Technical Paper.htm